scholarly journals Towards the Trace Formula for Convex-Cocompact Groups

Author(s):  
Ulrich Bunke ◽  
Martin Olbrich
Author(s):  
Jacob Russell ◽  
Davide Spriano ◽  
Hung Cong Tran

AbstractWe show the mapping class group, $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) groups, the fundamental groups of closed 3-manifolds, and certain relatively hyperbolic groups have a local-to-global property for Morse quasi-geodesics. This allows us to generalize combination theorems of Gitik for quasiconvex subgroups of hyperbolic groups to the stable subgroups of these groups. In the case of the mapping class group, this gives combination theorems for convex cocompact subgroups. We show a number of additional consequences of this local-to-global property, including a Cartan–Hadamard type theorem for detecting hyperbolicity locally and discreteness of translation length of conjugacy classes of Morse elements with a fixed gauge. To prove the relatively hyperbolic case, we develop a theory of deep points for local quasi-geodesics in relatively hyperbolic spaces, extending work of Hruska.


2021 ◽  
pp. 108997
Author(s):  
Quanlei Fang ◽  
Yi Wang ◽  
Jingbo Xia
Keyword(s):  

2021 ◽  
pp. 1-40
Author(s):  
YVES BENOIST ◽  
HEE OH

Abstract Let M be a geometrically finite acylindrical hyperbolic $3$ -manifold and let $M^*$ denote the interior of the convex core of M. We show that any geodesic plane in $M^*$ is either closed or dense, and that there are only countably many closed geodesic planes in $M^*$ . These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math.209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J., to appear, Preprint, 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic $3$ -manifold $M_0$ , the topological behavior of a geodesic plane in $M^*$ is governed by that of the corresponding plane in $M_0$ . We construct a counterexample of this phenomenon when $M_0$ is non-arithmetic.


2015 ◽  
Vol 148 ◽  
pp. 398-428 ◽  
Author(s):  
D. Grob ◽  
R.S. Kraußhar

2015 ◽  
Vol 17 (06) ◽  
pp. 1550069
Author(s):  
P. Bantay

We present a formula for vector-valued modular forms, expressing the value of the Hilbert-polynomial of the module of holomorphic forms evaluated at specific arguments in terms of traces of representation matrices, restricting the weight distribution of the free generators.


1996 ◽  
Vol 24 (3) ◽  
pp. 285-297 ◽  
Author(s):  
A. Mohapatra ◽  
Kakyan B. Sinha

Sign in / Sign up

Export Citation Format

Share Document