Roll Dynamics and Rollover Prevention

Author(s):  
Rajesh Rajamani
Keyword(s):  
Author(s):  
Fengchen Wang ◽  
Yan Chen

To assist vehicle rollover prevention and enhance vehicle roll motion safety, this paper proposes a novel active rollover preventer (ARPer) system, which consists of an in-wheel motor system moving along an orbit at the back of a vehicle. The roll and lateral dynamics of the vehicle equipped with the ARPer are modeled and mechanics analysis of the ARPer is presented as well. Based on the developed models, a Lyapunov nonlinear controller is designed for tracking a desired roll angle and a yaw rate when the impending rollover is detected. For a typical fishhook maneuver, two simulation cases are studied for different vehicle roof cargo loads, which represents different vehicle rollover properties without control. The CarSim®-Simulink co-simulation results show that compared with active front steering and differential braking control strategies, the APRer can successfully prevent the rollover propensity and maintain the vehicle lateral stability simultaneously.


Author(s):  
Christopher R. Carlson ◽  
J. Christian Gerdes

This paper uses Model Predictive Control theory to develop a framework for automobile stability control. The framework is then demonstrated with a roll mode controller which seeks to actively limit the peak roll angle of the vehicle while simultaneously tracking the driver’s yaw rate command. Initially, control law presented assumes knowledge of the complete input trajectory and acts as a benchmark for the best performance any controller could have on this system. This assumption is then relaxed by only assuming that the current driver steering command is available. Numerical simulations on a nonlinear vehicle model show that both control structures effectively track the driver intended yaw rate during extreme maneuvers while also limiting the peak roll angle. During ordinary driving, the controlled vehicle behaves identically to an ordinary vehicle. These preliminary results shows that for double lane change maneuvers, it is possible to limit roll angle while still closely tracking the driver’s intent.


Sign in / Sign up

Export Citation Format

Share Document