active safety systems
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 36)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Manas Metar

Abstract: The future of automotive relies on the mechatronic and electronic systems. The worldwide growth of automotive towards electronic systems suggests that driverless cars would soon be the common commuters. With such improvements safety of the passengers becomes first priority for the manufacturers. Nowadays automobiles come with high end technologies and quick responsive electronic systems. In addition to the passive safety systems, active safety systems definitely avoid collision thereby reducing the chances of injury and death. This project shows the working of an active safety system that is collision avoidance system. To create the model, TINKERCAD software has been used and a detailed working is explained. As a result, the system detects traffic and can alert the driver and stop the vehicle before meeting the collision. Keywords: Active Safety System, Arduino, Tinkercad, Vehicle Electronics System, Automotive Safety System, Collision Avoidance System, Self-Driving Car, Driverless Vehicle.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 454-469
Author(s):  
S. H. Abdel-Latif

Abstract The station black-out (SBO) is one of the main accident sequences to be considered in the field of severe accident research. To evaluate a nuclear power plant’s behavior in the context of this accident, the integral ASTEC-V2.1.1.3 code “Accident Source Term Evaluation Code” covers sequences of SBO accidents that may lead to a severe accident. The aim of this work is to discuss the modelling principles for the core melting and in-vessel melt relocation phenomena of the VVER-1000 reactor. The scenario of SBO is simulated by ASTEC code using its basic modules. Then, the simulation is performed again by the same code after adding and activating the modules; ISODOP, DOSE, CORIUM, and RCSMESH to simulate the ex-vessel melt. The results of the two simulations are compared. As a result of SBO, the active safety systems are not available and have not been able to perform their safety functions that maintain the safety requirements to ensure a secure operation of the nuclear power plant. As a result, the safety requirements will be violated causing the core to heat-up. Moreover potential core degradation will occur. The present study focuses on the reactor pressure vessel failure and relocation of corium into the containment. It also discusses the transfer of Fission Products (FPs) from the reactor to the containment, the time for core heat-up, hydrogen production and the amount of corium at the lower plenum reactor pressure vessel is determined.


Author(s):  
Quan Li ◽  
Shi Shang ◽  
Xizhe Pei ◽  
Qingfan Wang ◽  
Qing Zhou ◽  
...  

The active behaviors of pedestrians, such as avoidance motions, affect the resultant injury risk in vehicle–pedestrian collisions. However, the biomechanical features of these behaviors remain unquantified, leading to a gap in the development of biofidelic research tools and tailored protection for pedestrians in real-world traffic scenarios. In this study, we prompted subjects (“pedestrians”) to exhibit natural avoidance behaviors in well-controlled near-real traffic conflict scenarios using a previously developed virtual reality (VR)-based experimental platform. We quantified the pedestrian–vehicle interaction processes in the pre-crash phase and extracted the pedestrian postures immediately before collision with the vehicle; these were termed the “pre-crash postures.” We recorded the kinetic and kinematic features of the pedestrian avoidance responses—including the relative locations of the vehicle and pedestrian, pedestrian movement velocity and acceleration, pedestrian posture parameters (joint positions and angles), and pedestrian muscle activation levels—using a motion capture system and physiological signal system. The velocities in the avoidance behaviors were significantly different from those in a normal gait (p < 0.01). Based on the extracted natural reaction features of the pedestrians, this study provides data to support the analysis of pedestrian injury risk, development of biofidelic human body models (HBM), and design of advanced on-vehicle active safety systems.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6626
Author(s):  
Diego Maceira ◽  
Alberto Luaces ◽  
Urbano Lugrís ◽  
Miguel Á. Naya ◽  
Emilio Sanjurjo

Currently, the interest in creating autonomous driving vehicles and progressively more sophisticated active safety systems is growing enormously, being a prevailing importance factor for the end user when choosing between either one or another commercial vehicle model. While four-wheelers are ahead in the adoption of these systems, the development for two-wheelers is beginning to gain importance within the sector. This makes sense, since the vulnerability for the driver is much higher in these vehicles compared to traditional four-wheelers. The particular dynamics and stability that govern the behavior of single-track vehicles (STVs) make the task of designing active control systems, such as Anti-lock Braking System (ABS) systems or active or semi-active suspension systems, particularly challenging. The roll angle can achieve high values, which greatly affects the general behavior of the vehicle. Therefore, it is a magnitude of the utmost importance; however, its accurate measurement or estimation is far from trivial. This work is based on a previous paper, in which a roll angle estimator based on the Kalman filter was presented and tested on an instrumented bicycle. In this work, a further refinement of the method is proposed, and it is tested in more challenging situations using the multibody model of a motorcycle. Moreover, an extension of the method is also presented to improve the way noise is modeled within this Kalman filter.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012128
Author(s):  
A I Markovnina ◽  
N D Tsyganov ◽  
A V Papunin ◽  
V S Makarov ◽  
V V Belyakov

Abstract The problem of ensuring road safety affects all elements of the Driver-Car-Road-Environment system. Smart cars equipped with enough traffic assistants can significantly improve road safety. Active vehicle safety systems, including intelligent driver assistance systems and assistants, perform similar road safety functions. With all the variety of possibilities for equipping cars with systems complexes, the need arises to assess the feasibility and profitability of installing a particular complex of systems. For this, it is proposed to apply the methods of multi-criteria assessment. As a result of calculations, the best options for the sets of systems that most widely cover the road situation have been identified.


Vehicles ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 357-376
Author(s):  
Martín-Antonio Rodríguez-Licea

Active safety systems for three-wheeled vehicles seem to be in premature development; in particular, delta types, also known as tuk-tuks or sidecars, are sold with minimal protection against accidents. Unfortunately, the risk of wheel lifting and lateral and/or longitudinal vehicle roll is high. For instance, a tripped rollover occurs when a vehicle slides sideways, digging its tires into soft soil or striking an object. Unfortunately, research is mostly aimed at un-tripped rollovers while most of the rollovers are tripped. In this paper, models for lateral skid tripped and un-tripped rollover risks are presented. Later, independent braking and accelerating control actions are used to develop a dynamic stability control (DSC) to assist the driver in mitigating such risks, including holes/bumps road-scenarios. A common Lyapunov function and an LMI problem resolution ensure robust stability while optimization allows tuning the controller. Numerical and HIL tests are presented. Implementation on a three-wheeled vehicle requires an inertial measurement unit, and independent ABS and propulsion control as main components.


Author(s):  
Rafał Jurecki ◽  
Tomasz Stańczyk

The safety of road users is one of the priority issues raised by those involved in vehicle design, latest passive and active safety systems, traffic organization or driver education. Nowadays, an important road safety problem is the behaviour of drivers in emergency situations. In order to measurably estimate the driving quality, parameters such as velocity, acceleration, the way and frequency of using the control pedals are quite often used. This article describes how to assess driver's behaviour based on measurements taken on the road. The frequency of different acceleration ranges during the vehicle drive was determined based on the results obtained. For the arbitrarily adopted acceleration range of - 0.5 - 0.5 m/s2, the driver's working time was over 77 percent on average, with the difference varying significantly between different route sections. Similarly, the study compares the driving times for other ranges of acceleration.  


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1526
Author(s):  
Fengjiao Zhang ◽  
Yan Wang ◽  
Jingyu Hu ◽  
Guodong Yin ◽  
Song Chen ◽  
...  

The performance of vehicle active safety systems relies on accurate vehicle state information. Estimation of vehicle state based on onboard sensors has been popular in research due to technical and cost constraints. Although many experts and scholars have made a lot of research efforts for vehicle state estimation, studies that simultaneously consider the effects of noise uncertainty and model parameter perturbation have rarely been reported. In this paper, a comprehensive scheme using dual Extended H-infinity Kalman Filter (EH∞KF) is proposed to estimate vehicle speed, yaw rate, and sideslip angle. A three-degree-of-freedom vehicle dynamics model is first established. Based on the model, the first EH∞KF estimator is used to identify the mass of the vehicle. Simultaneously, the second EH∞KF estimator uses the result of the first estimator to predict the vehicle speed, yaw rate, and sideslip angle. Finally, simulation tests are carried out to demonstrate the effectiveness of the proposed method. The test results indicate that the proposed method has higher estimation accuracy than the extended Kalman filter.


Author(s):  
Wansoo Pak ◽  
Daniel Grindle ◽  
Costin Untaroiu

Abstract Pedestrians are one of the most vulnerable road users. In 2019, the USA reported the highest number of pedestrian fatalities in nearly three decades. The pre-impact conditions of Car-to-Pedestrian Collisions (CPC) vary significantly in terms of vehicles characteristics (e.g. front-end geometry, stiffness, etc.) and pedestrian characteristics (e.g. anthropometry, posture, etc.). The influence of pedestrian gait posture on CPC injury outcomes has not been well analyzed. The purpose of this study was to numerically investigate the changes in pedestrian kinematics and injuries across various gait postures in two different vehicle impacts. Five finite element (FE) human body models, that represent the 50th percentile male through the gait cycle, were developed and used to perform CPC simulations with two generic vehicle models representing a low-profile and high-profile vehicle. In the impacts with the high-profile vehicle, the pedestrian models usually slid above the bonnet leading edge and reported shorter wrap around distances than the low-profile vehicle impacts. The pedestrian postures influenced the post-impact rotation of the pedestrian and consequently, the impacted head region. Pedestrian posture also influenced the risk of injuries in the lower and upper extremities. Higher bone bending moments were observed in the stance phase posture compared to the swing phase. The findings of this study should be taken into consideration when examining pedestrian protection protocols. In addition, the results of this study can be used to improve the design of active safety systems used to protect pedestrians in collisions.


Sign in / Sign up

Export Citation Format

Share Document