Vehicle Rollover Prevention Through a Novel Active Rollover Preventer
To assist vehicle rollover prevention and enhance vehicle roll motion safety, this paper proposes a novel active rollover preventer (ARPer) system, which consists of an in-wheel motor system moving along an orbit at the back of a vehicle. The roll and lateral dynamics of the vehicle equipped with the ARPer are modeled and mechanics analysis of the ARPer is presented as well. Based on the developed models, a Lyapunov nonlinear controller is designed for tracking a desired roll angle and a yaw rate when the impending rollover is detected. For a typical fishhook maneuver, two simulation cases are studied for different vehicle roof cargo loads, which represents different vehicle rollover properties without control. The CarSim®-Simulink co-simulation results show that compared with active front steering and differential braking control strategies, the APRer can successfully prevent the rollover propensity and maintain the vehicle lateral stability simultaneously.