active front steering
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Xinxin Yao ◽  
Xianguang Gu ◽  
Ping Jiang

A coordination control strategy based on stability judgment is presented for autonomous vehicles (AVs) aiming to enhance the handling and stability performance. Firstly, the stability judgment scheme is used to evaluate the real-time stability level of vehicles based on the Self-Organizing Feature Map (SOFM) neural network and K-Means algorithm. Secondly, a coordination controller of active front steering (AFS) and direct yaw moment control (DYC) is designed to track the desired vehicle motion. To enhance the handling and stability of AVs, the weights of AFS and DYC controllers are adaptively adjusted according to the vehicle stability level. Finally, the effectiveness of the proposed method is verified in co-simulation environment of CarSim and Simulink, and a rapid control prototyping test is implemented to evaluate the feasibility and robustness. The results indicate that the stability judgment scheme and coordination control strategy for AVs can not only satisfy the requirements of path tracking accuracy but also enhance the handling and stability performance.


Author(s):  
Jan Sterthoff ◽  
Roman Henze ◽  
Ferit Küçükay

AbstractThis paper focuses on handling improvements enabled through Steer-by-Wire systems, which have increasingly become subject of R&D, as they not only offer the potential for improving vehicle handling but also have many advantages in combination with automated driving. Handling improvements through a steering ratio depending on vehicle speed, as well as steering-wheel angle, are known from Active Front Steering systems. A new overall concept is proposed, that also takes into account lateral and longitudinal acceleration as well as steering rate, which are all available signals in a production car. The overall concept is designed in an optimization process to modify a range of established characteristic parameters known from open-loop maneuvers and the objective evaluation of vehicle handling. In this context, validated models for a vehicle and a Steer-by-Wire system are used to obtain reliable results in simulation. Possibilities for tuning the non-linear steering behavior as well as improvements in the dynamic behavior, especially in yaw damping and response time, are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document