Cercal System

Author(s):  
Hiroto Ogawa ◽  
John P. Miller
Keyword(s):  
1997 ◽  
Vol 78 (5) ◽  
pp. 2655-2661 ◽  
Author(s):  
Adi Mizrahi ◽  
Frederic Libersat

Mizrahi, Adi and Frederic Libersat. Independent coding of wind direction in cockroach giant interneurons. J. Neurophysiol. 78: 2655–2661, 1997. In this study we examined the possible role of cell-to-cell interactions in the localization processing of a wind stimulus by the cockroach cercal system. Such sensory processing is performed primarily by pairs of giant interneurons (GIs), a group of highly directional cells. We have studied possible interactions among these GIs by comparing the wind sensitivity of a given GI before and after removing another GI with the use of photoablation. Testing various combinations of GI pairs did not reveal any suprathreshold interactions. This was true for all unilateral GI pairs on the left or right side as well as all the bilateral GI pairs (left and right homologues). Those experiments in which we were able to measure synaptic activity did not reveal subthreshold interactions between the GIs either. We conclude that the GIs code independently for a given wind direction without local GI–GI interactions. We discuss the possible implications of the absence of local interactions on information transfer in the first station of the escape circuit.


1996 ◽  
Vol 75 (4) ◽  
pp. 1345-1364 ◽  
Author(s):  
F. Theunissen ◽  
J. C. Roddey ◽  
S. Stufflebeam ◽  
H. Clague ◽  
J. P. Miller

1. The stimulus/response properties of four identified primary sensory interneurons in the cricket cercal sensory system were studied using electrophysiological techniques. These four cells are thought to represent a functionally discrete subunit of the cercal system: they are the only cells that encode information about stimulus direction to higher centers for low intensity stimuli. Previous studies characterized the quantity of information encoded by these cells about the direction of air currents in the horizontal plane. In the experiments reported here, we characterized the quantity and quality of information encoded in the cells' elicited responses about the dynamics of air current waveforms presented at their optimal stimulus directions. The total sample set included 22 cells. 2. This characterization was achieved by determining the cells' frequency sensitivities and encoding accuracy using the methods of stochastic systems analysis and information theory. The specific approach used for the analysis was the "stimulus reconstruction" technique in which a functional expansion was derived to transform the observed spike train responses into the optimal estimate (i.e., "reconstruction") of the actual stimulus. A novel derivation of the crucial equations is presented. The reverse approach is compared with the more traditional forward analysis, in which an expansion is derived that transforms the stimulus to a prediction of the spike train response. Important aspects of the application of these analytical approaches are considered. 3. All four interneurons were found to have identical frequency tuning, as assessed by the accuracy with which different frequency components of stimulus waveforms could be reconstructed with a linear expansion. The interneurons encoded significant information about stimulus frequencies between 5 and 80 Hz, which peak sensitivities at approximately 15 Hz. 4. All four interneurons were found to have identical stimulus/response latencies. The mean latency between a stimulus component and the corresponding elicited spike was 17 ms. All four interneurons also had identical integration times. The integration time, measured by the duration of stimulus, which could affect the probability of spiking, was approximately 50 ms. 5. The accuracy of the encoding can be expressed as a signal-to-noise ratio, where the noise is a scaled difference between the original signal and the best estimate of the signal. Peak signal-to-noise ratios of approximately 1 were obtained for the cells across all stimulus power levels, using only the linear expansion term. Analysis of the data indicated that the consideration of second-order nonlinear transformations of the stimulus would not have increased the calculated encoding accuracy. 6. The encoding accuracy also can be expressed in the information theoretic units of bits/second, which characterizes the information transmission rate of the cell. Bits/second values varied between 10 and 80 for the 22 different cells in our experimental set. The information rate values were highly correlated with the mean spike rates of the interneurons, but were not correlated with the stimulus power levels. However, normalizing the absolute information rates by the mean spike rate in each case yielded a measure of bits/spike that was remarkably invariant across all experiments. The measured bits/spike rate was approximately 1 for all experiments. This result is discussed in the context of recent theoretical studies on optimal encoding. 7. Although the dynamic sensitivities of the four interneurons were identical, their directional sensitivities are known to be orthogonal. Thus the cells are complementary to one another from a functional standpoint: whereas a particular cell will be insensitive to air currents from some directions, one or more of the other three cells will be sensitive to stimuli from those directions...


2015 ◽  
Vol 114 (5) ◽  
pp. 2649-2660 ◽  
Author(s):  
Pedro F. Jacob ◽  
Berthold Hedwig

The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.


2003 ◽  
Vol 189 (12) ◽  
pp. 867-876 ◽  
Author(s):  
D. Rinberg ◽  
H. Davidowitz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document