synaptic activity
Recently Published Documents


TOTAL DOCUMENTS

1403
(FIVE YEARS 345)

H-INDEX

100
(FIVE YEARS 10)

2022 ◽  
Vol 23 (2) ◽  
pp. 917
Author(s):  
Mónika Gönczi ◽  
Andrea Csemer ◽  
László Szabó ◽  
Mónika Sztretye ◽  
János Fodor ◽  
...  

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheeja Navakkode ◽  
Jing Zhai ◽  
Yuk Peng Wong ◽  
Guang Li ◽  
Tuck Wah Soong

AbstractThe CACNA1C (calcium voltage-gated channel subunit alpha 1 C) gene that encodes the CaV1.2 channel is a prominent risk gene for neuropsychiatric and neurodegenerative disorders with cognitive and social impairments like schizophrenia, bipolar disorders, depression and autistic spectrum disorders (ASD). We have shown previously that mice with exon 33 deleted from CaV1.2 channel (CaV1.2-exon 33−/−) displayed increased CaV1.2 current density and single channel open probability in cardiomyocytes, and were prone to develop arrhythmia. As Ca2+ entry through CaV1.2 channels activates gene transcription in response to synaptic activity, we were intrigued to explore the possible role of Cav1.2Δ33 channels in synaptic plasticity and behaviour. Homozygous deletion of alternative exon 33 resulted in enhanced long-term potentiation (LTP), and lack of long- term depression (LTD), which did not correlate with enhanced learning. Exon 33 deletion also led to a decrease in social dominance, sociability and social novelty. Our findings shed light on the effect of gain-of-function of CaV1.2Δ33 signalling on synaptic plasticity and behaviour and provides evidence for a link between CaV1.2 and distinct cognitive and social behaviours associated with phenotypic features of psychiatric disorders like schizophrenia, bipolar disorder and ASD.


2022 ◽  
Author(s):  
Alena Salašová ◽  
Niels Sanderhoff Degn ◽  
Mikhail Paveliev ◽  
Niels Kjærgaard Madsen ◽  
Saray López Benito ◽  
...  

Abstract Background: Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor dysfunction and loss of medium spiny neurons (MSNs) in dorsal striatum. Brain-derived neurotrophic factor (BDNF) sustains functionality and integrity of MSNs, and thus reduced BDNF signaling is integral to the disease. Mutations in BDNF receptor SorCS2 were recently identified in HD patients. Our study investigates the role of SorCS2 in MSNs biology and in HD progression. Methods: We derived a double transgenic line by crossbreeding SorCS2 deficient (KO) mice with the HD mouse model R6/1. Subsequently, we characterized the SorCS2 KO; R6/1 line by a set of behavioral and biochemical studies to evaluate phenotypes related to HD. Moreover, in combination with electrophysiology and super resolution microscopy techniques, we addressed the molecular mechanism by which SorCS2 controls synaptic activity in MSNs neurons. Results: We show that SorCS2 is expressed in MSNs with reduced levels in R6/1 HD model, and that SorCS2 deficiency exacerbates the disease progression in R6/1 mice. Furthermore, we find that SorCS2 binds TrkB and the NMDA receptor subunit GluN2B, which is required to control neurotransmission in corticostriatal synapses. While BDNF stimulates SorCS2-TrkB complex formation to enable TrkB signaling, it disengages SorCS2 from GluN2B, leading to enrichment of the subunit at postsynaptic densities. Consequently, long-term potentiation (LTP) is abolished in SorCS2 deficient mice, despite increased striatal TrkB and unaltered BDNF expression. However, the addition of exogenous BDNF rescues the phenotype. Finally, GluN2B, but not GluN2A, currents are also severely impaired in the SorCS2 KO mice. Conclusions: We formulate a novel molecular mechanism by which SorCS2 acts as a molecular switch. SorCS2 targets TrkB and GluN2B into postsynaptic densities to enable BDNF signaling and NMDAR dependent neurotransmission in the dorsal striatum. Remarkably, the binding between SorCS2 and TrkB or GluN2B, respectively, is mutually exclusive and controlled by BDNF. This mechanism provides an explanation why deficient SorCS2 signaling severely aggravates HD progression in mice. Moreover, we provide evidence that this finding might represent a general mechanism of SorCS2 signaling found in other brain areas, thus increasing its relevance for other neurological and psychiatric impairments.


2022 ◽  
Author(s):  
Shani Stern ◽  
Shong Lau ◽  
Andreea Manole ◽  
Idan Rosh ◽  
Menahem Percia ◽  
...  

Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: Neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, shows pathways and mechanisms that are central and convergent to PD and suggests a strong involvement of the tetra-partite synapse in PD pathology.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Ilkka Fagerlund ◽  
Antonios Dougalis ◽  
Anastasia Shakirzyanova ◽  
Mireia Gómez-Budia ◽  
Anssi Pelkonen ◽  
...  

Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.


2021 ◽  
Author(s):  
Margarita Dinamarca ◽  
Laura Colombo ◽  
Urszula Brykczynska ◽  
Amandine Grimm ◽  
Natalia Tousiaki ◽  
...  

Abstract A potential explanation for the spatiotemporal accumulation of pathological lesions in the brain of patients with neurodegenerative protein misfolding diseases (PMDs) is cell-to-cell transmission of aggregation-prone, misfolded proteins. Little is known about central to peripheral transmission and its contribution to pathology. We show that transmission of Huntington’s disease- (HD-) associated mutant HTT exon 1 (mHTTEx1) occurs across the neuromuscular junctions in human iPSC cultures and in vivo in wild-type mice. We found that transmission is an active and dynamic process, that happens prior to aggregate formation and is regulated by synaptic activity. Furthermore, we find that transmitted mHTTEx1 causes HD-relevant pathology at a molecular and functional level in human muscle cells, even in the presence of ubiquitous expression mHTTEx1. With this work we uncover a casual-link between mHTTEx1 synaptic transmission and pathology, highlighting the therapeutic potential in blocking toxic protein transmission in PMDs.


Author(s):  
Francisca Cornejo ◽  
Bastián I. Cortés ◽  
Greg M. Findlay ◽  
Gonzalo I. Cancino

Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.


Author(s):  
Konstantinos Spiliotis ◽  
Jens Starke ◽  
Denise Franz ◽  
Angelika Richter ◽  
Rüdiger Köhling

AbstractA large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.


Sign in / Sign up

Export Citation Format

Share Document