Lattice Static Methods in Metallic Alloys

Author(s):  
Joginder Singh Galsin
Keyword(s):  
Author(s):  
W. A. Chiou ◽  
N. L. Jeon ◽  
Genbao Xu ◽  
M. Meshii

For many years amorphous metallic alloys have been prepared by rapid quenching techniques such as vapor condensation or melt quenching. Recently, solid-state reactions have shown to be an alternative for synthesizing amorphous metallic alloys. While solid-state amorphization by ball milling and high energy particle irradiation have been investigated extensively, the growth of amorphous phase by cold-rolling has been limited. This paper presents a morphological and structural study of amorphization of Cu and Ti foils by rolling.Samples of high purity Cu (99.999%) and Ti (99.99%) foils with a thickness of 0.025 mm were used as starting materials. These thin foils were cut to 5 cm (w) × 10 cm (1), and the surface was cleaned with acetone. A total of twenty alternatively stacked Cu and Ti foils were then rolled. Composite layers following each rolling pass were cleaned with acetone, cut into half and stacked together, and then rolled again.


2015 ◽  
Vol 8 (2) ◽  
pp. 129-154
Author(s):  
Benjamin Podmiljsak ◽  
Paul J. McGuiness ◽  
Spomenka Kobe

1992 ◽  
Vol 45 (9) ◽  
pp. 5019-5022 ◽  
Author(s):  
K. Eckler ◽  
R. F. Cochrane ◽  
D. M. Herlach ◽  
B. Feuerbacher ◽  
M. Jurisch

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1020
Author(s):  
Xiao-Zhi Tang ◽  
Ya-Fang Guo

The interaction between a lattice dislocation and non-shearable precipitates has been well explained by the Orowan bypass mechanism. The calculated additional shear stress facilitates the evaluation of precipitation hardening in metallic alloys. The lack of information about how a twinning dislocation behaves in the same scenario hinders our understanding of the strengthening against twin-mediated plasticity in magnesium alloys. In the current study, the bowing and bypassing of a twining dislocation impeded by impenetrable obstacles are captured by atomistic simulations. The Orowan stress measurement is realized by revealing the stick-slip dynamics of a twinning dislocation. The measured Orowan stress significantly deviate from what classic theory predicts. This deviation implies that the line tension approximation may generally overestimate the Orowan stress for twinning dislocations.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
N. Birbilis ◽  
S. Choudhary ◽  
J. R. Scully ◽  
M. L. Taheri

AbstractMetallic alloys are critical to essentially all advanced technologies and engineered systems. The well-documented impact of corrosion (and oxidation) of alloys, remains a significant industrial and economic challenge, year on year. Recent activity in the field of metallurgy has revealed a class of metallic alloys, termed multi principal element alloys (MPEAs) that present unique physical properties. Such MPEAs have in many instances also demonstrated a high resistance to corrosion – which may permit the broader use of MPEAs as corrosion resistant alloys (CRAs) in harsh environments. Herein, the progress in MPEA research to date, along with prospects and challenges, are concisely reviewed—with potential future lines of research elaborated.


Sign in / Sign up

Export Citation Format

Share Document