Independent Identically Distributed Summands

Author(s):  
M. Loève
2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2021 ◽  
Vol 499 (1) ◽  
pp. 124982
Author(s):  
Benjamin Avanzi ◽  
Guillaume Boglioni Beaulieu ◽  
Pierre Lafaye de Micheaux ◽  
Frédéric Ouimet ◽  
Bernard Wong

1978 ◽  
Vol 15 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Svante Janson

This paper gives an elementary proof that, under some general assumptions, the number of parts a convex set in Rd is divided into by a set of independent identically distributed hyperplanes is asymptotically normally distributed. An example is given where the distribution of hyperplanes is ‘too singular' to satisfy the assumptions, and where a different limiting distribution appears.


2020 ◽  
Vol 30 (4) ◽  
pp. 215-241
Author(s):  
Gavriil A. Bakay ◽  
Aleksandr V. Shklyaev

AbstractLet (ξ(i), η(i)) ∈ ℝd+1, 1 ≤ i < ∞, be independent identically distributed random vectors, η(i) be nonnegative random variables, the vector (ξ(1), η(1)) satisfy the Cramer condition. On the base of renewal process, NT = max{k : η(1) + … + η(k) ≤ T} we define the generalized renewal process ZT = $\begin{array}{} \sum_{i=1}^{N_T} \end{array}$ξ(i). Put IΔT(x) = {y ∈ ℝd : xj ≤ yj < xj + ΔT, j = 1, …, d}. We find asymptotic formulas for the probabilities P(ZT ∈ IΔT(x)) as ΔT → 0 and P(ZT = x) in non-lattice and arithmetic cases, respectively, in a wide range of x values, including normal, moderate, and large deviations. The analogous results were obtained for a process with delay in which the distribution of (ξ(1), η(1)) differs from the distribution on the other steps. Using these results, we prove local limit theorems for processes with regeneration and for additive functionals of finite Markov chains, including normal, moderate, and large deviations.


2013 ◽  
Vol 50 (02) ◽  
pp. 533-541 ◽  
Author(s):  
Alexander Shapiro

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent, identically distributed data. Under mild regularity conditions, we prove a law of large numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straightforward way to establish convergence with probability 1 of sample-based estimators of risk averse stochastic programming problems.


Sign in / Sign up

Export Citation Format

Share Document