Forest Inventories as the Basis for a Continuous Monitoring of Forest Biomass Resources

1983 ◽  
pp. 63-101
Author(s):  
T. Cunia
2020 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Yusuke Matsuoka ◽  
Hiroaki Shirasawa ◽  
Uichi Hayashi ◽  
Kazuhiro Aruga

To promote sustainable timber and forest biomass utilization, this study estimated technically feasible and economically viable availability considering forest regenerations. This study focuses on five prefectures, namely, Aomori, Iwate, Miyagi, Akita, and Yamagata, and considers the trade between these prefectures. The data used in this study include forest registration (tree species and site index) and GIS data (information on roads and subcompartment layers) from the prefectures for private and communal forests. Additionally, this study includes GIS data (subcompartment layers, including tree species) from the Forestry Agency of Japan for national forests as well as 10-m-grid digital elevation models (DEMs) from the Geographical Survey Institute. As a result, supply potentials of timber and forest biomass resources were estimated at 11,388,960 m3/year and 2,277,792 m3/year, respectively. Then, those availabilities were estimated at 1,631,624 m3/year and 326,325 m3/year. Therefore, the rate of availabilities to supply potentials was 14.3%. Since timber production, and wood chip usage from thinned woods and logging residues in 2018 were 4,667,000 m3/year and 889,600 m3/year, respectively, the rates of timber and forest biomass resource availabilities to those values were 35.0% and 36.7%, respectively. Furthermore, the demand was estimated at 951,740 m3/year from 100,000 m3/year with the generation capacity of 5 MW. The rate of forest biomass resource availability versus the demand was 34.2%. The rates were increased to 64.1% with an additional regeneration subsidy, 173.3% with the thinning subsidy, and 181.5% with both subsidies. Thus, the estimated availability with both subsidies met the demand sufficiently in this region.


2011 ◽  
Vol 37 (6) ◽  
pp. 596-611 ◽  
Author(s):  
Hans-Erik Andersen ◽  
Jacob Strunk ◽  
Hailemariam Temesgen ◽  
Donald Atwood ◽  
Ken Winterberger

2012 ◽  
Vol 11 (39) ◽  
Author(s):  
Jianfeng ZHANG

2014 ◽  
Vol 103 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Yeong Mo Son ◽  
Sun Jeoung Lee ◽  
Sowon Kim ◽  
Jeong Sun Hwang ◽  
Raehyun Kim ◽  
...  

2013 ◽  
Vol 29 (1) ◽  
pp. 81-89
Author(s):  
Jin-A Lee ◽  
Jae-Heun Oh ◽  
Du-Song Cha

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1331
Author(s):  
Wei Wang ◽  
Lixue Guan ◽  
Zhang Wen ◽  
Xin Ma ◽  
Jiangping Fang ◽  
...  

With atmospheric reactive nitrogen (Nr) emissions increasing globally, research into Nr deposition has attracted increasing attention, especially in remote environments. These ecosystems are very sensitive to global change, especially enhanced Nr deposition. Forest environments, in particular, are highlighted because of their important ecological function. We quantified atmospheric Nr concentrations and deposition over four years of continuous monitoring in a southeast Tibetan boreal forest ecosystem, an ecosystem in which forest biomass and carbon density are high around the world. Average annual bulk Nr deposition was 3.00 kg N ha−1 y−1, with those of reduced and oxidized species estimated at 1.60 and 1.40 kg N ha−1 y−1, respectively. Bulk deposition of both NH4+ and NO3− were controlled by precipitation amount: both Nr deposition and precipitation were highest in summer and lowest in winter. Dry deposition of NH3 and NO2 were 1.18 and 0.05 kg N ha−1 y−1, respectively. Atmospheric NH3 concentrations were in the range 1.15–3.53 mg N L−1, highest in summer and lowest in winter. In contrast, no clear trend in seasonal NO2 concentrations was observed. Monthly NO2 concentrations were 0.79–1.13 mg N L−1. Total Nr deposition (bulk plus dry) was 4.23 (3.00 + 1.23) kg N ha−1 y−1 in the forest. Reduced nitrogen was the dominant species. In conclusion, Nr deposition was in the range at which forest net productivity and carbon sequestration are sensitive to any variation in nitrogen input, so quantification of Nr deposition should continue and with greater detail.


2007 ◽  
Vol 2 (4) ◽  
pp. 045032 ◽  
Author(s):  
R A Houghton ◽  
D Butman ◽  
A G Bunn ◽  
O N Krankina ◽  
P Schlesinger ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Yusuke Matsuoka ◽  
Hiroaki Shirasawa ◽  
Uichi Hayashi ◽  
Kazuhiro Aruga

To utilize timber and forest biomass resources for bioenergy, technically feasible and economically viable timber and forest biomass resources should be estimated accurately considering their long-term availability. This study focuses on five prefectures, namely, Aomori, Iwate, Miyagi, Akita, and Yamagata, and considers trade between these prefectures. The annual availability of timber and forest biomass resources, such as small-diameter or defect stem logs, rather than logging residues in Japan was estimated as supply potential from profitable forests where expected revenues surpassed all costs, from planting to final harvest. As a result, the supply potential and annual availability of timber were estimated at 11,388,960 m3/year and 1,631,624 m3/year, whereas those of forest biomass resources were estimated at 2,277,792 m3/year and 326,325 m3/year, respectively. Therefore, the rate of annual availability to supply potential was 14.3%. Since timber production and wood chip usage from thinned woods and logging residues in 2018 were 4,667,000 m3/year and 889,600 m3/year, the rates of annual availability for timber and forest biomass resources to those values were 35.0% and 36.7%, respectively. Furthermore, the demand was estimated at 951,740 m3/year from 100,000 m3/year with a generation capacity of 5 MW. The rate of forest biomass resource availability to demand was 34.2%. A thinning subsidy was provided for operational site areas larger than 5 ha in Japan. The rates from subcompartments and aggregated forests with a thinning subsidy increased to 91.4% and 190.3%, respectively. Thus, the estimated availability from aggregated forests with a thinning subsidy met the demand sufficiently in this region.


Sign in / Sign up

Export Citation Format

Share Document