tibetan forest
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Li Zhang ◽  
Yuzhi Ren ◽  
Kaijun Yang ◽  
Zhijie Li ◽  
Bo Tan ◽  
...  

Abstract Background Soil fungi play crucial roles in ecosystem functions. However, how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest. Methods We conducted a snow manipulation experiment to explore immediate and legacy effects of snow exclusion on soil fungal community diversity and composition in a spruce forest on the eastern Tibetan Plateau. Soil fungal communities were performed by the high throughput sequencing of gene-fragments. Results Ascomycota and Basidiomycota were the two dominant fungal phyla and Archaeorhizomyces, Aspergillus and Amanita were the three most common genera across seasons and snow manipulations. Snow exclusion did not affect the diversity and structure of soil fungal community in both snow-covered and snow-free seasons. However, the relative abundance of some fungal communities was different among seasons. Soil fungal groups were correlated with environmental factors (i.e., temperature and moisture) and soil biochemical variables (i.e., ammonium and enzyme). Conclusions These results suggest that the season-driven variations had stronger impacts on soil fungal community than short-term snow cover change. Such findings may have important implications for soil microbial processes in Tibetan forests experiencing significant decreases in snowfall.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1331
Author(s):  
Wei Wang ◽  
Lixue Guan ◽  
Zhang Wen ◽  
Xin Ma ◽  
Jiangping Fang ◽  
...  

With atmospheric reactive nitrogen (Nr) emissions increasing globally, research into Nr deposition has attracted increasing attention, especially in remote environments. These ecosystems are very sensitive to global change, especially enhanced Nr deposition. Forest environments, in particular, are highlighted because of their important ecological function. We quantified atmospheric Nr concentrations and deposition over four years of continuous monitoring in a southeast Tibetan boreal forest ecosystem, an ecosystem in which forest biomass and carbon density are high around the world. Average annual bulk Nr deposition was 3.00 kg N ha−1 y−1, with those of reduced and oxidized species estimated at 1.60 and 1.40 kg N ha−1 y−1, respectively. Bulk deposition of both NH4+ and NO3− were controlled by precipitation amount: both Nr deposition and precipitation were highest in summer and lowest in winter. Dry deposition of NH3 and NO2 were 1.18 and 0.05 kg N ha−1 y−1, respectively. Atmospheric NH3 concentrations were in the range 1.15–3.53 mg N L−1, highest in summer and lowest in winter. In contrast, no clear trend in seasonal NO2 concentrations was observed. Monthly NO2 concentrations were 0.79–1.13 mg N L−1. Total Nr deposition (bulk plus dry) was 4.23 (3.00 + 1.23) kg N ha−1 y−1 in the forest. Reduced nitrogen was the dominant species. In conclusion, Nr deposition was in the range at which forest net productivity and carbon sequestration are sensitive to any variation in nitrogen input, so quantification of Nr deposition should continue and with greater detail.


2020 ◽  
Author(s):  
Zhenfeng Xu ◽  
Li Zhang ◽  
Yuzhi Ren ◽  
Kaijun Yang ◽  
Zhijie Li ◽  
...  

Abstract Background: Soil fungi play crucial roles in ecosystem functions. However, how snow cover change associated with winter warming affects soil fungal communities remains unclear in the Tibetan forest.Methods: We conducted a snow manipulation experiment to explore immediate and legacy effects of snow exclusion on soil fungal community diversity and composition in a spruce forest on the eastern Tibetan Plateau. Soil fungal communities were performed by the high throughput sequencing of gene-fragments.Results: Ascomycota and Basidiomycota were the two dominant fungal phyla and Archaeorhizomyces, Aspergillus and Amanita were the three most common genera across seasons and snow manipulations. Snow exclusion did not affect the diversity and structure of soil fungal community in both snow-covered and snow-free seasons. However, the relative abundance of some fungal communities was different among seasons. Soil fungal groups were correlated with environmental factors (i.e., temperature and moisture) and soil biochemical variables (i.e., ammonium and enzyme).Conclusions: These results suggest that the season-driven variations had stronger impacts on soil fungal community than short-term snow cover change. Such findings may have important implications for soil microbial processes in Tibetan forests experiencing significant decreases in snowfall.


Forests ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 239
Author(s):  
Li Zhang ◽  
Ao Wang ◽  
Fuzhong Wu ◽  
Zhenfeng Xu ◽  
Bo Tan ◽  
...  

2015 ◽  
Vol 15 (5) ◽  
pp. 1224-1232 ◽  
Author(s):  
Jun-Tao Wang ◽  
Yuan-Ming Zheng ◽  
Hang-Wei Hu ◽  
Li-Mei Zhang ◽  
Jing Li ◽  
...  

2014 ◽  
Vol 188 ◽  
pp. 94-101 ◽  
Author(s):  
Ping Gong ◽  
Xiao-ping Wang ◽  
Yong-gang Xue ◽  
Bai-qing Xu ◽  
Tan-dong Yao

Sign in / Sign up

Export Citation Format

Share Document