The Return of Aquatic Vascular Plants into the Great Lakes Region after Late-Wisconsin Glaciation

Geobotany ◽  
1977 ◽  
pp. 283-299 ◽  
Author(s):  
Stephen J. Vesper ◽  
Ronald L. Stuckey
1989 ◽  
Vol 67 (4) ◽  
pp. 961-969 ◽  
Author(s):  
E. H. Hogg ◽  
J. K. Morton ◽  
Joan M. Venn

Species–area relations of vascular plants and the effect of nesting colonies of gulls on plant species composition were investigated for 77 islands in Georgian Bay and Lake Huron in the Great Lakes region of Canada. The percentage of plant species classed as alien, annual, or biennial was significantly greater on islands with gull colonies. The slope of the species–area curve was significantly steeper on islands supporting gull colonies compared with islands lacking gull colonies. The expected decline in species richness with increased island remoteness was not detected statistically using multiple regression analysis. The difference in species–area slopes does not appear to reflect a lower propagule immigration rate to islands with gull colonies, because gulls are important in the dispersal of alien plant species to these islands. Larger islands with gull colonies tended to have richer floras than islands of similar size without gull colonies. It is suggested that on these larger islands the presence of gull colonies produces a gradient of soil nutrient and disturbance regimes, thus increasing habitat heterogeneity and species richness.


2007 ◽  
Vol 135 (12) ◽  
pp. 4202-4213 ◽  
Author(s):  
Yarice Rodriguez ◽  
David A. R. Kristovich ◽  
Mark R. Hjelmfelt

Abstract Premodification of the atmosphere by upwind lakes is known to influence lake-effect snowstorm intensity and locations over downwind lakes. This study highlights perhaps the most visible manifestation of the link between convection over two or more of the Great Lakes lake-to-lake (L2L) cloud bands. Emphasis is placed on L2L cloud bands observed in high-resolution satellite imagery on 2 December 2003. These L2L cloud bands developed over Lake Superior and were modified as they passed over Lakes Michigan and Erie and intervening land areas. This event is put into a longer-term context through documentation of the frequency with which lake-effect and, particularly, L2L cloud bands occurred over a 5-yr time period over different areas of the Great Lakes region.


1995 ◽  
Vol 103 ◽  
pp. 51 ◽  
Author(s):  
William W. Bowerman ◽  
John P. Giesy ◽  
David A. Best ◽  
Vincent J. Kramer

Sign in / Sign up

Export Citation Format

Share Document