cyanobacterial blooms
Recently Published Documents


TOTAL DOCUMENTS

913
(FIVE YEARS 375)

H-INDEX

64
(FIVE YEARS 11)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Wannes Hugo R. Van Hassel ◽  
Mirjana Andjelkovic ◽  
Benoit Durieu ◽  
Viviana Almanza Marroquin ◽  
Julien Masquelier ◽  
...  

In the context of increasing occurrences of toxic cyanobacterial blooms worldwide, their monitoring in Belgium is currently performed by regional environmental agencies (in two of three regions) using different protocols and is restricted to some selected recreational ponds and lakes. Therefore, a global assessment based on the comparison of existing datasets is not possible. For this study, 79 water samples from a monitoring of five lakes in Wallonia and occasional blooms in Flanders and Brussels, including a canal, were analyzed. A Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method allowed to detect and quantify eight microcystin congeners. The mcyE gene was detected using PCR, while dominant cyanobacterial species were identified using 16S RNA amplification and direct sequencing. The cyanobacterial diversity for two water samples was characterized with amplicon sequencing. Microcystins were detected above limit of quantification (LOQ) in 68 water samples, and the World Health Organization (WHO) recommended guideline value for microcystins in recreational water (24 µg L−1) was surpassed in 18 samples. The microcystin concentrations ranged from 0.11 µg L−1 to 2798.81 µg L−1 total microcystin. For 45 samples, the dominance of the genera Microcystis sp., Dolichospermum sp., Aphanizomenon sp., Cyanobium/Synechococcus sp., Planktothrix sp., Romeria sp., Cyanodictyon sp., and Phormidium sp. was shown. Moreover, the mcyE gene was detected in 75.71% of all the water samples.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Markus Dengg ◽  
Claudine H. Stirling ◽  
Malcolm R. Reid ◽  
Piet Verburg ◽  
Evelyn Armstrong ◽  
...  

AbstractFreshwater phytoplankton blooms are increasing in prevalence and there are conflicting views on whether trace metals limit growth of key species and thus bloom formation. The Taupō Volcanic Zone (TVZ), New Zealand, was formed by multiple eruptions of a super-volcano which emitted rhyolitic tephra leaving lakes depleted in trace metals. This provides an opportunity to test the potential of trace metal limitation on freshwater phytoplankton growth under nanomolar concentrations. Growth responses of two algal species isolated from Lake Taupō, Dolichospermum lemmermannii (cyanobacteria) and Fragilaria crotonensis (diatom), to six biologically important trace metals (manganese, iron, zinc, cobalt, copper and molybdenum) were examined in culture experiments. These were conducted at three trace metal concentrations: (1) ambient, (2) two-times ambient, and (3) ten-times ambient concentrations in Lake Taupō. Elevated concentrations of iron significantly increased growth rates and maximum cell densities in D. lemmermannii, whereas no significant concentration dependence was observed for other trace metals. Fragilaria crotonensis showed no significant growth response to elevated concentrations of trace metals. These results highlight the importance of iron as a growth limiting nutrient for cyanobacteria and indicate that even small (twofold) increases in Fe concentrations could enhance cyanobacteria growth rates in Lake Taupō, potentially causing cyanobacterial blooms.


Author(s):  
Jishan Liu ◽  
David R. Greenwood ◽  
Lionel Kuntz ◽  
L. James Wright ◽  
Naresh Singhal

Cylindrospermopsin (CYL) and anatoxin-a (ANA) are alkaloid-like potent cyanotoxins produced during cyanobacterial blooms.


2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Detelina Belkinova ◽  
Ivanka Teneva ◽  
Stefan Kazakov ◽  
Silvia Stamenova

One of the most evident consequences of eutrophication of waters is the progressive spreading of persistent cyanobacterial blooms. They are often accompanied by the production of cyanotoxins in concentrations, which are hazardous for human health. In this research, we analysed phytoplankton communities in four lowland water bodies, for the presence of cyanobacterial blooms and toxin production. The cyanobacterial biovolumes we found, determine three of the lowland water bodies: Onogur Reservoir (OR), Asparuhov Val Reservoir (AVR), and Srebarna Lake (SL) as “Alert Level 1” of potentially hazardous levels of cyanotoxins. Cyanobacterial biovolume exceeds the threshold value of 8 mm3 L-1 (recreational waters) in AVR and SL at the end of the summer period. In OR, we registered sustainable bloom of Microcystis spp. during the whole summer season, and extremely high average seasonal value of the total biovolume (146.5 mm3 L-1). Micro-cystins were reported in all four analysed water bodies, with the highest concentration in OR (6 µg L-1). Cylindrospermopsin was detected in AVR and OR, while saxitoxins were in AVR and SL. The concentrations of cyanotoxins do not exceed the guideline values in recreational waters. However, the increased biovolumes of cyanobacteria are a signal that in three of the analysed water bodies, monitoring is recommended at the levels of cyanotoxins during the summer period.


2021 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Theodoti Papadimitriou ◽  
Matina Katsiapi ◽  
Natassa Stefanidou ◽  
Aikaterini Paxinou ◽  
Vasiliki Poulimenakou ◽  
...  

Cyanobacterial blooms have been known since ancient times; however, they are currently increasing globally. Human and ecological health risks posed by harmful cyanobacterial blooms have been recorded around the world. These risks are mainly associated with their ability to affect the ecosystem chain by different mechanisms like the production of cyanotoxins, especially microcystins. Their expansion and their harmful effects have led many researchers to seek techniques and strategies to control them. Among them, hydrogen peroxide could be a promising tool against cyanobacteria and cyanotoxins and it is well-established as an environmentally friendly oxidizing agent because of its rapid decomposition into oxygen and water. The aim of the present study was to evaluate the effect of hydrogen peroxide on phytoplankton from two hypertrophic waterbodies in Greece. The effect of hydrogen peroxide on concentration of microcystins found in the waterbodies was also studied. Treatment with 4 mg/L hydrogen peroxide was applied to water samples originated from the waterbodies and Cyanobacterial composition and biomass, phycocyanin, chlorophyll-a, and intra-cellular and total microcystin concentrations were studied. Cyanobacterial biomass and phycocyanin was reduced significantly after the application of 4 mg/L hydrogen peroxide in water treatment experiments while chlorophytes and extra-cellular microcystin concentrations were increased. Raphidiopsis (Cylindrospermopsis) raciborskii was the most affected cyanobacterial species after treatment of the water of the Karla Reservoir in comparison to Aphanizomenon favaloroi, Planktolyngbya limnetica, and Chroococcus sp. Furthermore, Microcystis aeruginosa was more resistant to the treatment of Pamvotis lake water in comparison with Microcystis wesenbergii and Microcystis panniformis. Our study showed that hydrogen peroxide differentially impacts the members of the phytoplankton community, affecting, thus, its overall efficacy. Different effects of hydrogen peroxide treatment were observed among cyanobacerial genera as well as among cyanobacterial species of the same genus. Different effects could be the result of the different resistance mechanisms of each genus or species to hydrogen peroxide. Hydrogen peroxide could be used as a treatment for the mitigation of cyanobacterial blooms in a waterbody; however, the biotic and abiotic characteristics of the waterbody should be considered.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Sevasti-Kiriaki Zervou ◽  
Triantafyllos Kaloudis ◽  
Spyros Gkelis ◽  
Anastasia Hiskia ◽  
Hanna Mazur-Marzec

Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC–qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.


Author(s):  
Ji Li ◽  
Kevin Sellner ◽  
Allen Place ◽  
Jeffrey Cornwell ◽  
Yonghui Gao

Cyanobacterial blooms can be stimulated by excessive phosphorus (P) input, especially when diazotrophs are the dominant species. A series of mesocosm experiments were conducted in a lake dominated by a cyanobacteria bloom to study the effects of Phoslock®, a phosphorus adsorbent. The results showed that the addition of Phoslock® lowered the soluble reactive phosphate (SRP) concentrations in water due to efficient adsorption and mitigated the blooms. Once settled on the sediments, Phoslock® serves as a barrier to reduce P diffusion from sediments into the overlying waters. In short-term (1 day) incubation experiments, Phoslock® diminished or reversed SRP effluxes from bottom sediments. At the same time, the upward movement of the oxic–anoxic interface through the sediment column slightly enhanced NH4+ release and depressed N2 release, suggesting the inhibition of nitrification and denitrification. In a long-term (28 days) experiment, Phoslock® hindered the P release, reduced the cyanobacterial abundance, and alleviated the bloom-driven enhancements in the pH and oxygen. These results suggest that, through suppression of internal nutrient effluxes, Phoslock® can be used as an effective control technology to reduce cyanobacteria blooms common to many freshwater systems.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3640
Author(s):  
Md Mamun ◽  
Usman Atique ◽  
Kwang-Guk An

Water quality degradation is one of the most pressing environmental challenges in reservoirs around the world and makes the trophic status assessment of reservoirs essential for their restoration and sustainable use. The main aims of this study were to determine the spatial variations in water quality and trophic state of 204 South Korean reservoirs at different altitude levels. The results demonstrated mean total phosphorus (TP), chlorophyll-a (CHL-a), total suspended solids (TSS), organic matter indicators (chemical oxygen demand: COD; total organic carbon: TOC), water temperature (WT), and electrical conductivity (EC) remain consistently higher in the very lowland reservoirs (VLLR) than those in other altitudes, due to sedimentary or alluvial watersheds. The average TP and CHL-a levels in VLLR crossed the limit of the eutrophic water, symptomizing a moderate risk of cyanobacterial blooms. Empirical models were developed to identify critical variables controlling algal biomass and water clarity in reservoirs. The empirical analyses of all reservoir categories illustrated TP as a better predictor of CHL-a (R2 = 0.44, p < 0.01) than TN (R2 = 0.02, p < 0.05) as well as showed strong P-limitation based on TN:TP ratios. The algal productivity of VLLR (R2 = 0.61, p < 0.01) was limited by phosphorus, while highland reservoirs (HLR) were phosphorus (R2 = 0.23, p < 0.03) and light-limited (R2 = 0.31, p < 0.01). However, TSS showed a highly significant influence on water clarity compared to TP and algal CHL-a in all reservoirs. TP and TSS explained 47% and 34% of the variance in non-algal turbidity (NAT) in HLR. In contrast, the TP and TSS variances were 18% and 29% in midland reservoirs (MLR) and 32% and 20% in LLR. The trophic state index (TSI) of selected reservoirs varied between mesotrophic to eutrophic states as per TSI (TP), TSI (CHL-a), and TSI (SD). Mean TSI (CHL-a) indicated all reservoirs as eutrophic. Trophic state index deviation (TSID) assessment also complemented the phosphorus limitation characterized by the blue-green algae (BGA) domination in all reservoirs. Overall, reservoirs at varying altitudes reflect the multiplying impacts of anthropogenic factors on water quality, which can provide valuable insights into reservoir water quality management.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Joanna Kosiba ◽  
Wojciech Krztoń

AbstractAn important group of protozooplankton, the ciliates, are a crucial component of aquatic food webs. They are the main grazers on bacteria and algae transferring carbon to higher levels of the food web (metazooplankton and fish fry). Changes in the quality and quantity of protozooplankton can modify the quality and quantity of metazooplankton, especially predatory copepods, causing changes in energy transfer and the matter cycle. Observable climate change is one of the most significant factors promoting the increase of cyanobacterial blooms. Therefore, the aim of this study was to find out how cyanobacterial blooms modify relationships between ciliates (prey) and copepods (predator), and to discover possible pathways of changes in freshwater food webs. We analysed the relationship between the biomass of predatory copepods and feeding guilds of ciliates (algivorous, bacterivorous, bacteri-algivorous). The relationship of predators biomass with algivorous and bacteri-algivorous ciliate biomasses, with a simultaneous lack of relationship with bacterivorous ciliate biomass, demonstrates that bacterial fixed carbon may be only partially contributing to the total energy passed through this link. Results demonstrated that the bloom enhanced the relationship between prey and predator. Larger and free-swimming ciliate species appear to play a greater role in energy transfer than smaller sedentary species.


Sign in / Sign up

Export Citation Format

Share Document