Staging B-Cell Development and the Role of Ig Gene Rearrangement in B Lineage Progression

Author(s):  
Richard R. Hardy ◽  
Susan Shinton ◽  
Robert Wasserman ◽  
Yue-Sheng Li
2020 ◽  
Vol 11 ◽  
Author(s):  
Nandor Nagy ◽  
Florian Busalt ◽  
Viktoria Halasy ◽  
Marina Kohn ◽  
Stefan Schmieder ◽  
...  

2007 ◽  
Vol 204 (9) ◽  
pp. 2047-2051 ◽  
Author(s):  
Simona Ferrari ◽  
Vassilios Lougaris ◽  
Stefano Caraffi ◽  
Roberta Zuntini ◽  
Jianying Yang ◽  
...  

Agammaglobulinemia is a rare primary immunodeficiency characterized by an early block of B cell development in the bone marrow, resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. So far, mutations in Btk, μ heavy chain, surrogate light chain, Igα, and B cell linker have been found in 85–90% of patients with agammaglobulinemia. We report on the first patient with agammaglobulinemia caused by a homozygous nonsense mutation in Igβ, which is a transmembrane protein that associates with Igα as part of the preBCR complex. Transfection experiments using Drosophila melanogaster S2 Schneider cells showed that the mutant Igβ is no longer able to associate with Igα, and that assembly of the BCR complex on the cell surface is abrogated. The essential role of Igβ for human B cell development was further demonstrated by immunofluorescence analysis of the patient's bone marrow, which showed a complete block of B cell development at the pro-B to preB transition. These results indicate that mutations in Igβ can cause agammaglobulinemia in man.


2003 ◽  
pp. 217-228
Author(s):  
Markus Horcher ◽  
Dirk Eberhard ◽  
Meinrad Busslinger

1998 ◽  
Vol 20 (4) ◽  
pp. 383
Author(s):  
S. R. Rheingold ◽  
M. Jiang ◽  
S. A. Grupp ◽  
B. Himelstein

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1334-1334
Author(s):  
Hongsheng Wang ◽  
Jianxun Feng ◽  
Chang Hoon Lee ◽  
Herbert Morse

Abstract Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor that expresses in T cells, B cells and macrophages and plays a role in myeloid development. Targeted deletion of IRF8 in mice (IRF8−/−) induced progressive increase in the numbers of granulocytes in various lymphoid organs and development of a syndrome similar to human chronic myelogenous leukemia. In addition to defective development of macrophages and dendritic cells, B cell development was also impaired in IRF8−/− mice. This includes decreased numbers of early B cells, expanded marginal zone (MZ) B cells and diminished follicular (OF) B2 cells. Because abnormal myeloid cells could alter microenvironment required for normal B cell development, we have generated IRF8 conditional knockout mice to specifically investigate the function of IRF8 in B lineage cells. Mice were engineered to have exon 2, encoding the DNA binding domain of IRF8, flanked by loxP sites (designated IRF8f/+). These mice were then crossed with the CD19Cre strain in which the expression of Cre-recombinase is controlled by the endogenous CD19 locus. Homozygous mice (designated (IRF8f/f x Cre)F1) underwent germline excision of IRF8 in CD19+ B lineage cells. As a result, there was no detectable mRNA and protein of IRF8 in their splenic B cells. Flow cytometry analysis revealed expanded MZ B cells and reduced OF B2 cells in the spleen of (IRF8f/f x Cre)F1 mice. Interestingly, the expression level of CD23 on OF B cells was significantly decreased in (IRF8f/f x Cre)F1 mice, indicating that IRF8 is required for maintaining a normal OF phenotype. In the peritoneum of (IRF8f/f x Cre)F1 mice, while the numbers of B1a and B2 cells were slightly decreased, the number of B1b cells was slightly increased. Furthermore, BXH2 mice carrying a mutation (C915T) in the Icsbp1 gene exhibited similar expansion of MZ B cells and low expression of CD23 in OF B cells. Taken together, these analyses indicate that IRF8 is required for development of normal MZ and B2 cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1788-1788
Author(s):  
Nagisa Sakurai ◽  
Manami Maeda ◽  
Sung-UK Lee ◽  
Julie Teruya-Feldstein ◽  
Takahiro Maeda

Abstract LRF (Leukemia/Lymphoma Related Factor, also known as Pokemon, FBI-1, OCZF and ZBTB7a) was originally identified as an interaction partner of the oncoprotein BCL6. LRF can act as a proto-oncogene by repressing the tumor suppressor ARF and cooperates with BCL6 in MEF (mouse embryonic fibroblasts) immortalization. It is highly expressed in human Non-Hodgkin Lymphoma (NHL) cases, in the pathogenesis of which BCL6 is known to be involved (Maeda et al. Nature 2005). Inducible inactivation of the LRF gene in mouse Hematopoietic Stem Cells (HSCs) results in complete block of early B cell development at the HSC/progenitor stages and concomitant development of double positive (DP) T cells in the bone marrow (BM) (Maeda et al. Science 2007). While these findings clearly illustrate key roles of LRF in normal and malignant B cell development, it is not fully identified as to which B cell stages LRF is required during normal B cell development. To elucidate the role of LRF in B cells in vivo, we established and characterized B cell-specific LRF conditional knockout (KO) mice. We took advantage of mb-1 Cre knock-in mice, in which Cre expression is restricted to the B cells after the ProB cell stage. B cell compartments in the BM (PreProB, ProB, PreB and immatureB) are grossly normal in LRFF/ Fmb1-Cre mice. The LRF gene was efficiently eliminated in BM CD19+ B cells revealed by quantitative real-time PCR assay. Furthermore, LRF protein was not detected in purified CD19+ B cells, but seen in CD19-non-B cells, confirming the specific inactivation of the LRF gene in B cells. Thus, despite its critical role at the HSC/progenitor stages, LRF was found to be dispensable for the survival of normal BM B cells. These findings are consistent with the fact that GSI treatment (Maeda et al. Science 2007) or Notch1 loss (Lee and Maeda, unpublished) rescues the defects in early B cell development seen in LRFF/FMx1-Cre+ mice. Notch signaling is necessary for the transitional B cells to commit to the marginal zone B cells (MZB). Inactivation of the component of the Notch pathways in mice results in no MZB development. On the contrary, deletion of the MINT/SHARP gene, a suppressor of Notch signaling, leads to increase of MZB cells and concomitant reduction of follicular B (FOB) cells, indicating that Notch induces MZB cell fate at the transitional B cell stage. Given that LRF is a potent Notch suppressor at the HSC/progenitor stages, we hypothesized that LRF opposes Notch pathway in mature B cells as well. To test this hypothesis, we characterized mature B cell development in LRFF/Fmb1-Cre mice. While transitional B cells were largely unaffected in LRFF/Fmb1-Cre mice, we observed a slight but statistically significant reduction of follicular (FO) B cells (B220+CD19+AA4.1-CD1d-CD23+) and concomitant increase of MZB cells (B220+CD19+AA4.1-CD1d+CD23-) as seen in MINT/SHARP knockout mice. Thus, LRF may also oppose Notch pathways at the branching point for the FOB vs. MZB fate decision. Finally, to determine the role of LRF in Germinal Center (GC) formation in vivo, we characterized secondary lymphoid organs of LRFF/Fmb1-Cre mice after antigen stimulation. Both spleen and Peyer’s Patches were analyzed two weeks after immunization with Chicken Gamma Globulin (NP-CGG). While a GC reaction was robustly induced in control mice upon immunization, GC formation was significantly impaired in LRFF/Fmb1-Cre mice as revealed by immuno-histochemical analysis (IHC) and FACS. Only few GC cells (B220+CD19+FAS+CD38-PNA+) were observed in spleens, and the absolute numbers of GC cells were drastically reduced in LRFF/Fmb1-Cre mice. Residual LRF-deficient GC B cells were mostly negative for CXCR4, which is predominantly expressed in proliferating centroblasts within GCs, suggesting that LRF-deficient GC B cells may have defects in cellular proliferation in response to antigen stimuli. Our data indicates that LRF plays key roles in mature B cell development in the secondary lymphoid organs, but dispensable for the maintenance of early BM B cells.


Sign in / Sign up

Export Citation Format

Share Document