B Cells
Recently Published Documents


TOTAL DOCUMENTS

24210
(FIVE YEARS 6988)

H-INDEX

270
(FIVE YEARS 68)

EBioMedicine ◽  
2021 ◽  
Vol 73 ◽  
pp. 103616
Author(s):  
Julia Hesse ◽  
Magdalena Siekierka-Harreis ◽  
Bodo Steckel ◽  
Christina Alter ◽  
Merle Schallehn ◽  
...  
Keyword(s):  
B Cells ◽  

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Carrasco ◽  
Isabella Sjölander ◽  
Aline Van Acker ◽  
Andy Dernstedt ◽  
Johan Fehrm ◽  
...  

Tonsil hyperplasia is the most common cause of pediatric obstructive sleep apnea (OSA). Despite the growing knowledge in tissue immunology of tonsils, the immunopathology driving tonsil hyperplasia and OSA remains unknown. Here we used multi-parametric flow cytometry to analyze the composition and phenotype of tonsillar innate lymphoid cells (ILCs), T cells, and B cells from pediatric patients with OSA, who had previous polysomnography. Unbiased clustering analysis was used to delineate and compare lymphocyte heterogeneity between two patient groups: children with small tonsils and moderate OSA (n = 6) or large tonsils and very severe OSA (n = 13). We detected disturbed ILC and B cell proportions in patients with large tonsils, characterized by an increase in the frequency of naïve CD27-CD21hi B cells and a relative reduction of ILCs. The enrichment of naïve B cells was not commensurate with elevated Ki67 expression, suggesting defective differentiation and/or migration rather than cellular proliferation to be the causative mechanism. Finally, yet importantly, we provide the flow cytometry data to be used as a resource for additional translational studies aimed at investigating the immunological mechanisms of pediatric tonsil hyperplasia and OSA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Li ◽  
Qin Zeng ◽  
Shuyi Wang ◽  
Mengyuan Li ◽  
Xionghui Chen ◽  
...  

Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.


2021 ◽  
Vol 33 (6) ◽  
pp. 1137-1141
Author(s):  
Risako Yamashita ◽  
Toshinori Yoshida ◽  
Mio Kobayashi ◽  
Suzuka Uomoto ◽  
Saori Shimizu ◽  
...  

Neuroleptospirosis is a rare disease caused by pathogenic Leptospira interrogans in humans; however, it has not been fully studied in animals. A young wild raccoon dog was found convulsing in the recumbent position and died the next day. Histologic examination revealed nonsuppurative meningoencephalitis in the cerebrum, cerebellum, midbrain, and medulla oblongata. The lesions consisted of mixed infiltrates of Iba1-positive macrophages and CD3-positive T cells, with a small number of CD79α-positive B cells and myeloperoxidase-positive neutrophils. In the frontal cortex, perivascular cuffs and adjacent microglial nodules were distributed diffusely, especially in the molecular layer. Glial nodules were comprised of Iba1- and myeloperoxidase-positive activated microglia. Immunohistochemistry revealed leptospires in mononuclear cell perivascular cuffs, but not in glial nodules. Neuroleptospirosis was accompanied by Leptospira-related nonsuppurative interstitial nephritis, pulmonary edema and hemorrhage, and coronary periarteritis, as well as Toxocara tanuki in the small intestine and nonspecific foreign-body granulomas in the lungs and stomach.


JCI Insight ◽  
2021 ◽  
Author(s):  
Gabriella Leung ◽  
Yuhuan Zhou ◽  
Philip Ostrowski ◽  
Sivakami Mylvaganam ◽  
Parastoo Boroumand ◽  
...  
Keyword(s):  
B Cells ◽  

2021 ◽  
Vol 118 (43) ◽  
pp. e2108957118
Author(s):  
Wen Lu ◽  
Katarzyna M. Skrzypczynska ◽  
Arthur Weiss

T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.


2021 ◽  
Vol 22 (21) ◽  
pp. 11374
Author(s):  
Paweł Bryniarski ◽  
Katarzyna Nazimek ◽  
Janusz Marcinkiewicz

Hypertension is accompanied by the over-activation of macrophages. Diuretics administered alone or in combination with hypotensive drugs may have immunomodulatory effects. Thus, the influence of tested drugs on mouse macrophage-mediated humoral immunity was investigated. Mice were treated intraperitoneally with captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) by 8 days. Mineral oil-induced peritoneal macrophages were harvested to assess the generation of cytokines in ELISA, and the expression of surface markers was analyzed cytometrically. Macrophages were also pulsed with sheep red blood cells (SRBC) and transferred to naive mice for evaluation of their ability to induce a humoral immune response. Tested drugs increase the expression of surface markers important for the antigen phagocytosis and presentation. SRBC-pulsed macrophages from mice treated with captopril combined with diuretics increased the secretion of antigen-specific antibodies by recipient B cells, while macrophages of mice treated with hydrochlorothiazide or furosemide with captopril increased the number of antigen-specific B cells. Tested drugs alter the macrophage secretory profile in favor of anti-inflammatory cytokines. Our results showed that diuretics with or without captopril modulate the humoral response by affecting the function of macrophages, which has significant translational potential in assessing the safety of antihypertensive therapy.


2021 ◽  
Vol 17 (10) ◽  
pp. e1010006
Author(s):  
Laëtitia Trapp-Fragnet ◽  
Julia Schermuly ◽  
Marina Kohn ◽  
Luca D. Bertzbach ◽  
Florian Pfaff ◽  
...  

Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Richard B. Greaves ◽  
Dawei Chen ◽  
E. Allison Green

Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.


Author(s):  
Ane Fernandez Salinas ◽  
Eva Piano Mortari ◽  
Sara Terreri ◽  
Concetta Quintarelli ◽  
Federica Pulvirenti ◽  
...  

Abstract Background Data on immune responses to SARS-CoV-2 in patients with Primary Antibody Deficiencies (PAD) are limited to infected patients and to heterogeneous cohorts after immunization. Methods Forty-one patients with Common Variable Immune Deficiencies (CVID), six patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-receptor binding domain (RBD) antibody production, generation of Spike-specific memory B-cells, and Spike-specific T-cells before vaccination and one week after the second dose of BNT162b2 vaccine. Results The vaccine induced Spike-specific IgG and IgA antibody responses in all HD and in 20% of SARS-CoV-2 naive CVID patients. Anti-Spike IgG were detectable before vaccination in 4 out 7 CVID previously infected with SARS-CoV-2 and were boosted in six out of seven patients by the subsequent immunization raising higher levels than patients naïve to infection. While HD generated Spike-specific memory B-cells, and RBD-specific B-cells, CVID generated Spike-specific atypical B-cells, while RBD-specific B-cells were undetectable in all patients, indicating the incapability to generate this new specificity. Specific T-cell responses were evident in all HD and defective in 30% of CVID. All but one patient with XLA responded by specific T-cell only. Conclusion In PAD patients, early atypical immune responses after BNT162b2 immunization occurred, possibly by extra-follicular or incomplete germinal center reactions. If these responses to vaccination might result in a partial protection from infection or reinfection is now unknown. Our data suggests that SARS-CoV-2 infection more effectively primes the immune response than the immunization alone, possibly suggesting the need for a third vaccine dose for patients not previously infected.


Sign in / Sign up

Export Citation Format

Share Document