Enhanced Antigen Presenting Cell Function Following in Vivo Priming

Author(s):  
Geneviève De Becker ◽  
Philippe Mockel ◽  
Jacques Urbain ◽  
Oberdan Leo ◽  
Muriel Moser
10.1038/nm962 ◽  
2003 ◽  
Vol 9 (12) ◽  
pp. 1469-1476 ◽  
Author(s):  
Douglas G Millar ◽  
Kristine M Garza ◽  
Bernhard Odermatt ◽  
Alisha R Elford ◽  
Nobuyuki Ono ◽  
...  

1981 ◽  
Vol 154 (3) ◽  
pp. 676-687 ◽  
Author(s):  
E Nisbet-Brown ◽  
B Singh ◽  
E Diener

The restrictions imposed by the major histocompatibility complex on T-B-antigen-presenting cell (APC) interactions were studied with an in vivo adoptive transfer system, using mutually tolerant T and B cells taken from one-way fetal liver chimeras. It was found that the B cells and adoptive recipient (which provides APC function) have to share determinants encoded by the left-hand end of the H-2 complex for cooperation, whereas there is apparently no such requirement for T-B cell syngeneicity. Suppression arising from allogeneic effects between the host and the transferred T or B cells was excluded by the use of tolerant as well as normal adoptive recipients; both were functionally equivalent. We conclude that under experimental conditions, unrestricted helper T cell function and concurrent APC-B cell genetic restriction can be demonstrated in vivo.


1983 ◽  
Vol 36 (3) ◽  
pp. 304-309 ◽  
Author(s):  
MICHAEL F. GURISH ◽  
DAVID H. LYNCH ◽  
ROBERT YOWELL ◽  
RAYMOND A. DAYNES

1996 ◽  
Vol 183 (4) ◽  
pp. 1491-1500 ◽  
Author(s):  
A A Vink ◽  
F M Strickland ◽  
C Bucana ◽  
P A Cox ◽  
L Roza ◽  
...  

Prior ultraviolet (UV) irradiation of the site of application of hapten on murine skin reduces contact sensitization, impairs the ability of dendritic cells in the draining lymph nodes (DLN) to present antigen, and leads to development of hapten-specific suppressor T lymphocytes. We tested the hypothesis that UV-induced DNA damage plays a role in the impaired antigen-presenting activity of DLN cells. First, we assessed the location and persistence of cells containing DNA damage. A monoclonal antibody specific for cyclobutyl pyrimidine dimers (CPD) was used to identify UV-damaged cells in the skin and DLN of C3H mice exposed to UV radiation. Cells containing CPD were present in the epidermis, dermis, and DLN and persisted, particularly in the dermis, for at least 4 d after UV irradiation. When fluorescein isothiocyanate (FITC) was applied to UV-exposed skin, the DLN contained cells that were Ia+, FITC+, and CPD+; such cells from mice sensitized 3 d after UV irradiation exhibited reduced antigen-presenting function in vivo. We then assessed the role of DNA damage in UV-induced modulation of antigen-presenting cell (APC) function by using a novel method of increasing DNA repair in mouse skin in vivo. Liposomes containing T4 endonuclease V (T4N5) were applied to the site of UV exposure immediately after irradiation. This treatment prevented the impairment in APC function and reduced the number of CPD+ cells in the DLN of UV-irradiated mice. Treatment of unirradiated skin with T4N5 in liposomes or treatment of UV-irradiated skin with liposomes containing heat-inactivated T4N5 did not restore immune function. These studies demonstrate that cutaneous immune cells sustain DNA damage in vivo that persists for several days, and that FITC sensitization causes the migration of these to the DLN, which exhibits impaired APC function. Further, they support the hypothesis that DNA damage is an essential initiator of one or more of the steps involved in impaired APC function after UV irradiation.


1992 ◽  
Vol 284 (4) ◽  
pp. 189-192 ◽  
Author(s):  
A. Cerny ◽  
S. Izui ◽  
J. -H. Saurat ◽  
F. A. Waldvogel ◽  
H. C. Morse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document