mouse skin
Recently Published Documents


TOTAL DOCUMENTS

3182
(FIVE YEARS 281)

H-INDEX

101
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Yuting Wang ◽  
Liping Liu ◽  
Yifan Song ◽  
Xiaojie Yu ◽  
Hongkui Deng

AbstractSenescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knockdown of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 180
Author(s):  
Kritphudis Suttasattakrit ◽  
Arnon Khamkeaw ◽  
Chanchana Tangwongsan ◽  
Prasit Pavasant ◽  
Muenduen Phisalaphong

In this work, surface disinfection and biofilm susceptibility were investigated by applying ionic silver of 0.4–1.6 µg/mL and cathodic voltage-controlled electrical treatment of 1.8 V and a current of 30 mA to Escherichia coli (E. coli) ATCC 25922 biofilm-contaminated titanium substrates. Herein, it is evident that the treatment exhibited the potential use to enhance the susceptibility of bacterial biofilms for surface disinfection. In vitro studies have demonstrated that the ionic silver treatment of 60 min significantly increased the logarithmic reduction (LR) of bacterial populations on disinfectant-treated substrates and the electrical treatment enhanced the silver susceptibility of E. coli biofilms. The LR values after the ionic silver treatments and the electric-enhanced silver treatments were in the ranges of 1.94–2.25 and 2.10–2.73, respectively. The treatment was also associated with morphological changes in silver-treated E. coli cells and biofilm-contaminated titanium surfaces. Nevertheless, the treatments showed no cytotoxic effects on the L929 mouse skin fibroblast cell line and only a slight decrease in pH was observed during the electrical polarization of titanium substrate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fengjia Chen ◽  
Jing Zhang ◽  
Hyun Jung Ji ◽  
Min-Kyu Kim ◽  
Kyoung Whun Kim ◽  
...  

Deinococcus radiodurans is an extremely resistant bacterium against extracellular stress owing to on its unique physiological functions and the structure of its cellular constituents. Interestingly, it has been reported that the pattern of alteration in Deinococcus proportion on the skin is negatively correlated with skin inflammatory diseases, whereas the proportion of Staphylococcus aureus was increased in patients with chronic skin inflammatory diseases. However, the biological mechanisms of deinococcal interactions with other skin commensal bacteria have not been studied. In this study, we hypothesized that deinococcal cellular constituents play a pivotal role in preventing S. aureus colonization by inhibiting biofilm formation. To prove this, we first isolated cellular constituents, such as exopolysaccharide (DeinoPol), cell wall (DeinoWall), and cell membrane (DeinoMem), from D. radiodurans and investigated their inhibitory effects on S. aureus colonization and biofilm formation in vitro and in vivo. Among them, only DeinoPol exhibited an anti-biofilm effect without affecting bacterial growth and inhibiting staphylococcal colonization and inflammation in a mouse skin infection model. Moreover, the inhibitory effect was impaired in the Δdra0033 strain, a mutant that cannot produce DeinoPol. Remarkably, DeinoPol not only interfered with S. aureus biofilm formation at early and late stages but also disrupted a preexisting biofilm by inhibiting the production of poly-N-acetylglucosamine (PNAG), a key molecule required for S. aureus biofilm formation. Taken together, the present study suggests that DeinoPol is a key molecule in the negative regulation of S. aureus biofilm formation by D. radiodurans. Therefore, DeinoPol could be applied to prevent and/or treat infections or inflammatory diseases associated with S. aureus biofilms.


2021 ◽  
Author(s):  
Kaibin Yang ◽  
Shiting Song ◽  
Yafei Zhang ◽  
Siting Shen ◽  
Xingzhi Xu ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emanuel Rognoni ◽  
Georgina Goss ◽  
Toru Hiratsuka ◽  
Kalle H Sipilä ◽  
Thomas Kirk ◽  
...  

Solar ultraviolet radiation (UVR) is a major source of skin damage, resulting in inflammation, premature ageing and cancer. While several UVR-induced changes, including extracellular matrix reorganisation and epidermal DNA damage, have been documented, the role of different fibroblast lineages and their communication with immune cells has not been explored. We show that acute and chronic UVR exposure led to selective loss of fibroblasts from the upper dermis in human and mouse skin. Lineage tracing and in vivo live imaging revealed that repair following acute UVR is predominantly mediated by papillary fibroblast proliferation and fibroblast reorganisation occurs with minimal migration. In contrast, chronic UVR exposure led to a permanent loss of papillary fibroblasts, with expansion of fibroblast membrane protrusions partially compensating for the reduction in cell number. Although UVR strongly activated Wnt-signalling in skin, stimulation of fibroblast proliferation by epidermal b-catenin stabilisation did not enhance papillary dermis repair. Acute UVR triggered an infiltrate of neutrophils and T cell subpopulations and increased pro-inflammatory prostaglandin signalling in skin. Depletion of CD4 and CD8 positive cells resulted in increased papillary fibroblast depletion, which correlated with an increase in DNA damage, pro-inflammatory prostaglandins and reduction in fibroblast proliferation. Conversely, topical COX-2 inhibition prevented fibroblast depletion and neutrophil infiltration after UVR. We conclude that loss of papillary fibroblasts is primarily induced by a deregulated inflammatory response, with infiltrating T cells supporting fibroblast survival upon UVR-induced environmental stress.


2021 ◽  
pp. 088391152110617
Author(s):  
Ebtesam A Mohamad ◽  
Monira M Rageh ◽  
Mirhan Mostafa Darwish

UV rays are one of the most dangerous factors that harm the skin. There is continuous improvement in getting an effective sunscreen that protects the skin from excessive exposure to UV rays. Typically, phenylbenzimidazole-5-sulfonic acid (PBSA) is used as a sun blocking agent, but its disadvantage is that it can photodegrade and cause cell damage. In our work, PBSA was encapsulated in niosomes nanoparticles then coated with chitosan-aloe vera (CS-nio-aloe/PBSA) to form a carrier polymer with novel and potent properties. This polymer controls PBSA release and epidermal penetration. Characterization of CS-nio-aloe/PBSA polymer nanoparticles through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). The carrier polymer release rate was studied in vitro and epidermal permeability to coated PBSA was assessed using mouse skin. The nanoparticle polymer containing sunscreen was effectively prepared with an encapsulation efficiency of 80%. The formulation (CS-nio-aloe/PBSA) was completely deposited on the surface of the skin. This supports its use to protect the skin, and its nanostructures stimulate the release of PBSA for a longer period. Encapsulation of PBSA in CS-nio-aloe nanoparticles could allow for further cellular preservation, UV protection, control of free PBSA, and limited penetration through the mouse skin epidermis.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7648
Author(s):  
Hyoung Moon Kim ◽  
Seyeon Oh ◽  
Chang Hu Choi ◽  
Jin Young Yang ◽  
Sunggeun Kim ◽  
...  

Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrej Sikoski ◽  
Krish Jayapranu ◽  
Hong-Ming Zhou ◽  
Yunglong Liu ◽  
Xiaoling Xuei ◽  
...  

While playing a critical role in skin wound healing, the inflammatory phase of this process is poorly understood. To gain a better understanding of the inflammatory phase of wound healing, we developed an ex vivo skin culture model of skin injury-induced inflammation. Previous work in our laboratory showed ex vivo culture of human skin induces an interleukin 1 alpha (IL-1α)-dependent response characterized by increased transcript and protein levels for the inflammatory cytokines/chemokines, IL-6, CXCL1, and CSF3. However, the cellular sources of these factors in ex vivo cultured human skin have not been determined. Prior work with ex vivo cultured mouse skin and single cell RNA sequencing suggested fibroblasts and endothelial cells were potential cellular sources for these inflammatory mediators. The current studies used spatial transcriptomics analysis of ex vivo cultured human skin to localize the IL-1α target cell populations/skin tissue regions that produce IL-6, CXCL1 and CSF3. The Visium Gene Expression Solution platform (10x Genomics Inc.) was used to generate spatial transcriptomics data from skin specimens preserved immediately after biopsy or after skin culture for 24 hours. Loupe Browser version 5.1.0 (10x Genomics Inc) was used for data analysis to identify and characterize cell populations/regions expressing IL6, CXCL1, and CSF3 and associated differentially expressed genes (including cell type-specific transcripts). Notably, these IL-1α-induced transcripts were localized to the parent dermis region cluster. Analysis of subclusters in the dermal region showed differential expression of these inflammatory transcripts in regions enriched with either or both fibroblast and endothelial cell specific-type markers. Potential novel markers of this inflammatory response, like SOD2, were identified and warrant future investigation. Subsequent studies in identifying the targets of IL-1α in skin inflammation is called for, as they may lead to better understanding of this processes in wound healing and better clinical outcomes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Siyin Han ◽  
Delun Huang ◽  
Taijin Lan ◽  
Yongpei Wu ◽  
Yingbiao Wang ◽  
...  

The objective of this study was to investigate the therapeutic effect of seawater pearl powder (SPP) on ultraviolet (UV) irradiation-induced photoaging in mouse skin. The protein and trace elements in SPP were detected by liquid chromatography-mass spectrometry, atomic fluorescence spectrometry, and inductively coupled plasma-atomic emission spectrometry. The effect of SPP on treating skin damage resulting from UV-induced photoaging was observed by gross physical appearance and histopathological analysis. Oxidative stress and melanin synthesis were analyzed using biochemical method. Western blotting was applied to analyze the phosphorylation and expression levels of matrix metalloproteinase-1 (MMP-1), collagen I, and proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathways (p38, ERK, and JNK). The results show that SPP has a significant therapeutic effect on UV-induced photoaging of skin and improves and restores appearance and tissue structure of mouse skin. The major mechanism may be related to reduction of expression level of MMP-1 and enhancement of collagen I production via inhibition of MAPK signaling pathway after scavenging of excess reactive oxygen species (ROS) in the UV-induced photoaged skin of mice. Meanwhile, it may also be involved in reducing melanin content by inhibiting tyrosinase activity after scavenging excess ROS in the UV-induced photoaged skin of mice. Therefore, SPP could be a good substance to treat photoaging skin. Taking cost-effectiveness and efficacy into consideration, the optimal concentration of SPP for treating photoaging skin could be 100 mg/g.


Sign in / Sign up

Export Citation Format

Share Document