Application of a Metal Vacuum Microbalance to the Study of Solid Surfaces by Physical Adsorption

1965 ◽  
pp. 209-229 ◽  
Author(s):  
John M. Thomas ◽  
Brian R. Williams
1955 ◽  
Vol 33 (2) ◽  
pp. 245-250 ◽  
Author(s):  
E. L. Pace ◽  
K. S. Dennis ◽  
S. A. Greene ◽  
E. L. Heric

The question of reversibility and equilibrium is considered in relation to the physical adsorption of gases on finely divided solid surfaces. Conclusions are drawn from calorimetric measurements of (1) adsorption isotherms, (2) integral, differential, and isosteric heats of adsorption, and (3) heat capacity of the adsorbed phase for surface coverages of the order of a monolayer or less. In line with the preceding, results are presented and discussed for calorimetric studies involving (1) heats of adsorption and heat capacities of methane adsorbed on rutile between 80 and 140°K., (2) heats of adsorption of argon on rutile between 60 and 90°K., and (3) the zero point entropy of krypton adsorbed on rutile at a coverage of about 0.57 of the monolayer capacity.


2008 ◽  
Vol 14 (4) ◽  
pp. 227-229 ◽  
Author(s):  
Ljiljana Rozic ◽  
Tatjana Novakovic ◽  
Srdjan Petrovic ◽  
Zorica Vukovic ◽  
Zeljko Cupic

Solid surfaces are neither ideally regular, that is, morphological and energetically homogeneous, nor are they fully irregular or fractal. Instead, real solid surfaces exhibit a limited degree of organization quantified by the fractal dimension, D. Fractal analysis was applied to investigate the effect of concentrations of HCl solutions on the structural and textural properties of chemically activated bentonite from southern Serbia. Acid treatment of bentonites is applied in order to remove impurities and various exchangeable cations from bentonite clay. Important physical changes in acid-activated smectite are the increase of the specific surface area and of the average pore volume, depending on acid strength, time and temperature of a treatment. On the basis of the sorption-structure analysis, the fractal dimension of the bentonite surfaces was determined by Mahnke and M?gel method. The fractal dimension evaluated by this method was 2.11 for the AB3 and 1.94 for the AB4.5 sample. The estimation of the values of the fractal dimension of activated bentonites was performed in the region of small pores, 0.5 nm < rp < 2 nm.


Sign in / Sign up

Export Citation Format

Share Document