solid surfaces
Recently Published Documents


TOTAL DOCUMENTS

4295
(FIVE YEARS 354)

H-INDEX

125
(FIVE YEARS 8)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 38
Author(s):  
Yukihiro Yonemoto ◽  
Kanta Tashiro ◽  
Minori Yamashita ◽  
Tomoaki Kunugi

Droplet splashing behaviors of water-ethanol binary mixture liquids on roughened solid surfaces were experimentally observed in order to investigate the effects of surface tension, viscosity, and wettability/surface roughness on the splashing occurrence. The range of the droplet volumes was from 1.7 μL to 32.6 μL. The ranges of the surface tension and the viscosity were from 21.1 mN/m to 71.9 mN/m, and from 1 mPas to 2.91 mPas, respectively. The surface roughness range was from 0.03 μm to 1.25 μm for Ra. The present experimental data were evaluated on the basis of the existing models. Resulting from these experiments, a simple model using the Ohnesorge number evaluated by the capillary length was proposed and the accuracy of the predicted critical values such as the critical Weber and Reynolds numbers were discussed. The result indicated that the liquid properties and the quantification of the surface condition such as surface roughness are important factors for the prediction of the splashing behavior.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 247
Author(s):  
Hao Zhang ◽  
Ling Pan ◽  
Xuqing Xie

Droplets impinging on solid surfaces is a common phenomenon. However, the motion of surfaces remarkably influences the dynamical behaviors of droplets, and related research is scarce. Dynamical behaviors of water nanodroplets impinging on translation and vibrating solid copper surfaces were investigated via molecular dynamics (MD) simulation. The dynamical characteristics of water nanodroplets with various Weber numbers were studied at four translation velocities, four vibration amplitudes, and five vibration periods of the surface. The results show that when water nanodroplets impinge on translation surfaces, water molecules not only move along the surfaces but also rotate around the centroid of the water nanodroplet at the relative sliding stage. Water nanodroplets spread twice in the direction perpendicular to the relative sliding under a higher surface translation velocity. Additionally, a formula for water nanodroplets velocity in the translation direction was developed. Water nanodroplets with a larger Weber number experience a heavier friction force. For cases wherein water nanodroplets impinge on vibration surfaces, the increase in amplitudes impedes the spread of water nanodroplets, while the vibration periods promote it. Moreover, the short-period vibration makes water nanodroplets bounce off the surface.


2022 ◽  
Author(s):  
Saikishan Suryanarayanan ◽  
David B. Goldstein ◽  
Colton P. Finke ◽  
Eleazar Herrera Hernandez ◽  
Edward White ◽  
...  

Author(s):  
Fangfang Zhang ◽  
Xiangyu Li ◽  
Huajie Li ◽  
Jingdan Tang ◽  
Gang Chen ◽  
...  

Author(s):  
Xiaonan Zhu ◽  
Fei Yang ◽  
Haoran Wang ◽  
Siyuan Zhao ◽  
Yifei Wu ◽  
...  

Abstract Intrinsic roughness of solid surfaces causes a series of inevitable shortcomings in the use of mechanical electrical contacts, among which one of the most fatal is the repulsive electrodynamic force arising from high currents. A large contact force coming from a heavy holding mechanism helps to suppress the repulsive effect whereas the mechanism consumes energy and remains to be challenging for a compact switching device. Here, a liquid metal (LM) bridge is introduced to wet solid electrodes to eliminate contact issues. Four instability patterns induced by the electromagnetic pinch effect are identified to characterize LM bridge’s response to high currents. Simulation results reveal that an inner vortex caused by uneven distributions of current density and electrodynamic volume force leads to the rupture of a necked LM bridge. With a uniform structure, a cylindrical LM bridge is proved to be robust with respect to an impulse current higher than 10 kA, exceeding a commercial compact relay by a factor of more than 10 in terms of current withstand performance. Our research facilitates compact and energy-saving switch equipment and has a potential to realize arbitrary desired levels of high current withstand without the use of a holding mechanism. This paper also offers deep insights into the high current applications of LM from the perspective of fluid related physical mechanisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinguo Zhao ◽  
Shuge Sun ◽  
Wei Shi ◽  
Xuemei Sun ◽  
Yan Zhang ◽  
...  

The increasing underwater noise generated by anthropogenic activities has been widely recognized as a significant and pervasive pollution in the marine environment. Marine mussels are a family of sessile bivalves that attach to solid surfaces via the byssal threads. They are widely distributed along worldwide coastal areas and are of great ecological and socio-economic importance. Studies found that anthropogenic noise negatively affected many biological processes and/or functions of marine organisms. However, to date, the potential impacts of anthropogenic noise on mussel byssal attachment remain unknown. Here, the thick shell mussels Mytilus coruscus were exposed to an ambient underwater condition (∼50 dB re 1 μPa) or the playbacks of pile-driving noise (∼70 or ∼100 dB re 1 μPa) for 10 days. Results showed that the noise significantly reduced the secretion of byssal threads (e.g., diameter and volume) and weakened their mechanical performances (e.g., strength, extensibility, breaking stress, toughness and failure location), leading to a 16.95–44.50% decrease in mussel byssal attachment strength. The noise also significantly down-regulated the genes expressions of seven structural proteins (e.g., mfp-1, mfp-2, mfp-3, mfp-6, preCOL-P, preCOL-NG, and preCOL-D) of byssal threads, probably mediating the weakened byssal attachment. Given the essential functions of strong byssal attachment, the findings demonstrate that the increasing underwater anthropogenic noise are posing a great threat to mussel population, mussel-bed community and mussel aquaculture industry. We thus suggest that future work is required to deepen our understanding of the impacts of anthropogenic noise on marine invertebrates, especially these with limited locomotion ability, like bivalves.


Sign in / Sign up

Export Citation Format

Share Document