average pore
Recently Published Documents


TOTAL DOCUMENTS

929
(FIVE YEARS 384)

H-INDEX

22
(FIVE YEARS 7)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Stewart J. Taylor ◽  
Liu Yang ◽  
Ashleigh J. Fletcher

The production of resorcinol–formaldehyde xerogels has yielded insight into the gelation processes underpinning their structures. In this work, the role of the cation species from the catalyst is probed by studying the simultaneous addition of sodium carbonate and calcium carbonate to a resorcinol–formaldehyde mixture. Twenty-eight xerogels were prepared by varying the solids content, catalyst concentration, and catalyst composition, and each was analysed for its textural properties, including the surface area and average pore diameter. The results indicate that the role of the cation is linked to the stabilisation of the clusters formed within the system, and that the Group II catalyst causes the salting out of the oligomers, resulting in fewer, larger clusters, hence, an increase in pore size and a broadening of the pore size distribution. The results provide insight into how these systems can be further controlled to create tailored porous materials for a range of applications.


2022 ◽  
Vol 58 (4) ◽  
pp. 47-54
Author(s):  
Gheorghe Batrinescu ◽  
Ioana-Alexandra Ionescu ◽  
Roxana-Elena Scutariu ◽  
Bogdan Chiricuta ◽  
Ionut Cristian Surupaceanu

Results obtained from the characterization of three water samples (one representing the effluent of a municipal treatment plant and the two others representing surface water from the Jiu River/Romania, upstream and downstream of the effluent discharge point) are presented in this study in terms of microplastic content. The water samples were processed by successively passing them through a series of filters with the following dimensions: 5 mm, 0.5 mm (500 im), 0.1 mm (100 im) and then through some microfiltration membranes (MF) type EZ-Pak Membrane Filters (Merk-Millipore) made of a mixture of cellulose esters, with an average pore diameter of 0.45�m. In order to highlight the microplastics in the water samples, their analysis was performed as well as the solid material retained on the microfiltration membranes, by scanning electron microscopy (SEM) using a SEM Quanta FEG 250/Thermo Fischer Scientific. The results obtained highlighted the existence of microplastics in all the analyzed samples, in the known forms presented in the specialized literature: irregular planes, fibers and spheres. Their dimensions are variable, ranging between 3.2 �m and 119.5 �m for irregular plane microplastics and between 3 �m and 15 �m for spherical microplastics. The dimensions of microplastics in the form of fibers are also in the range of tens of �m and cannot be established exactly because in most cases they appear in the form of conglomerates. The treatment plant�s microplastic effluents content led to the modification of the physical-chemical indicators of the water in their natural receptor. Thus, the content of organic matter and total suspended matter in the downstream water compared to the effluent discharge point is higher than in the upstream water. The analysis of microplastics by SEM allows only their highlighting and their geometry, being a first step in the study of the pollution induced by such materials.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 46
Author(s):  
Wen-Shing Chen ◽  
Wen-Tien Tsai ◽  
Yu-Quan Lin ◽  
Chi-Hung Tsai ◽  
Yao-Tsung Chang

The edible mushroom industry has grown significantly in recent years due to the dietary change and the demand for heathy food. However, the spent mushroom compost (SMC) will be produced in large quantities after the harvest, thus forming an agricultural waste requiring proper management other than dumping or burning. In this work, two types of SMCs with the cultivation of shiitake fungus (SF) and black fungus (BF) were converted into porous biochar products (a series of SMC-SF-BC and SMC-BF-BC) at higher pyrolysis temperatures (i.e., 400, 600 and 800 °C) based on their thermochemical characteristics, using thermogravimetric analysis (TGA). The pore and chemical properties of the resulting products, including surface area, pore volume, average pore size, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier Transform infrared spectroscopy (FTIR), were studied to correlate them with the most important process parameter. The results showed that the pore properties of the biochar products indicated a significant increase with the increase in the pyrolysis temperature from 400 to 600 °C. The data on the maximal Brunauer-Emmett-Teller (BET) surface area for the biochar products produced at 800 °C (i.e., SMC-SF-BC-800 and SMC-BF-BC-800) were found to be 312.5 and 280.9 m2/g, respectively. Based on the EDS and FTIR, plenty of oxygen-containing functional groups were found on the surface of the resulting biochar products.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012017
Author(s):  
Sizhen Chen ◽  
Chao Ren ◽  
Penglei Zhang ◽  
Yunna Sun ◽  
Guifu Ding

Abstract To cater to the application in various micro/nano devices, this paper reports a compatible and efficient approach combining electrodeposition and dealloying to fabricate bi-continuous nanoporous copper films. In the electrodeposition step, effect of concentration ratio of different ions, pH of the solution and cathode current density on the elementary composition and microscopic morphology of the deposited alloy are systematically investigated, obtaining an optimum condition with good stability and process compatibility. A uniform copper-zinc alloy with its zinc content improved to ~67 at.% is prepared under this condition. A uniform nanoporous copper with an average pore size of 150 nm is fabricated by ultrasonic assisted dealloying whose efficiency is significantly improved compared to free dealloying. This method is promising to be used in the mass production of nanoporous copper films, benefiting researches on various practical applications in micro/nano devices.


2022 ◽  
Vol 64 (3) ◽  
pp. 365
Author(s):  
А.А. Набережнов ◽  
О.А. Алексеева ◽  
А.В. Кудрявцева ◽  
Д.Ю. Чернышов ◽  
Т.Ю. Вергентьев ◽  
...  

The temperature evolution of the crystal structure of a nanocomposite material obtained by introducing sodium nitrate NaNO3 from a melt under pressure into a nanoporous alkali borosilicate glass with an average pore diameter of 7 nm has been studied by the method of diffraction of synchrotron radiation in a wide temperature range upon heating. Analysis of the experimental diffraction patterns revealed a significant decrease in the temperature of the structural (orientational) transition by more than 50 K (up to 496 K) compared to bulk sodium nitrate. From the temperature dependence of the intensity of the superstructure peak (113), the dependence of the critical exponent β (T) for this transition was obtained and a significant difference from the critical exponent for a bulk material was found in the temperature range from 455 K to the transition temperature. Analysis of the broadening of Bragg reflections made it possible to estimate the average size (~ 40 nm) of sodium nitrate nanoparticles into the pores. An increase in the linear coefficient of thermal expansion in the [001] direction was found in NaNO3 nanoparticles in comparison with bulk material at temperatures above 450 K.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Swetapadma Praharaj ◽  
Dibyaranjan Rout

Abstract Constructing a novel nanocomposite structure based on Co3O4 is of the current interest to design and develop efficient electrochemical capacitors. The capacitive performance of MoO3@Co3O4 nanocomposite is compared with pristine Co3O4 nanoparticles, both of them being synthesized by hydrothermal technique. A BET surface area of ~41 m2g-1 (almost twice that of Co3O4 )and average pore size of 3.6 nm is found to be suitable for promoting Faradaic reactions in the nanocomposite. Electrochemical measurements conducted on both samples predict capacitive behavior with quasi-reversible redox reactions. MoO3@Co3O4 nanocomposite is capable of delivering a superior specific capacitance of 1248 Fg-1 at 0.5 Ag-1 along with notable stability of 92% even after 2000 cycles of charge-discharge and Coulombic efficiency approaching 100% at 10 Ag-1. The outstanding results obtained in this work assure functional adequacy of MoO3@Co3O4 nanocomposite in fabricating high-performance electrochemical capacitors.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nurlan Almassov ◽  
Sean Kirkpatrick ◽  
Zhanna Alsar ◽  
Nurzhan Serik ◽  
Christos Spitas ◽  
...  

In this paper, we demonstrate a new, highly efficient method of crosslinking multilayer graphene, and create nanopores in it by its irradiation with low-energy argon cluster ions. Irradiation was performed by argon cluster ions with an acceleration energy E ≈ 30 keV, and total fluence of argon cluster ions ranging from 1 × 109 to 1 × 1014 ions/cm2. The results of the bombardment were observed by the direct examination of traces of argon-cluster penetration in multilayer graphene, using high-resolution transmission electron microscopy. Further image processing revealed an average pore diameter of approximately 3 nm, with the predominant size corresponding to 2 nm. We anticipate that a controlled cross-linking process in multilayer graphene can be achieved by appropriately varying irradiation energy, dose, and type of clusters. We believe that this method is very promising for modulating the properties of multilayer graphene, and opens new possibilities for creating three-dimensional nanomaterials.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Abdullah M. Asiri ◽  
Francesco Petrosino ◽  
Valerio Pugliese ◽  
Sher Bahadar Khan ◽  
Khalid Ahmad Alamry ◽  
...  

The casting and preparation of ultrafiltration ZnO modified cellulose acetate membrane (CA/ZnO) were investigated in this work. CA membranes were fabricated by phase inversion using dimethylformamide (DMF) as a solvent and ZnO as nanostructures materials. Ultrafiltration (UF) performance, mechanical stability, morphology, contact angle, and porosity were evaluated on both CA- and ZnO-modified CA samples. Scanning electron microscopy (SEM) was used to determine the morphology of the membranes, showing different pore sizes either on rough surfaces and cross-sections of the samples, an asymmetric structure and ultra-scale pores with an average pore radius 0.0261 to 0.045 µm. Contact angle measurements showed the highest hydrophobicity values for the samples with no ZnO addition, ranging between 48° and 82.7° on their airside. The permeability values decreased with the increasing CA concentration in the casting solution, as expected; however, ZnO-modified membranes produced lower flux than the pure CA ones. Nevertheless, ZnO modified CA membranes have higher surface pore size, pore density and porosity, and improved surface hydrophilicity compared with pure CA membranes. The results indicated that the incorporated nano-ZnO tends to limit the packing of the polymer chains onto the membrane structure while showing antifouling properties leading to better hydrophilicity and permeation with consistent UF applications.


2021 ◽  
Vol 11 (24) ◽  
pp. 12163
Author(s):  
Sujuan Pan ◽  
Changqing Wang ◽  
Yibo Wang ◽  
Rongmin Wang

In this work, feather keratin was extracted from the waste feather of chicken via alkyd pretreatment and reduction method, the extraction rate is above 85%. The molecular weight and aggregation morphology of feather keratin in an aqueous environment were characterized by 18-angle laser light scattering gel permeation chromatography and field emission transmission electron microscopy. The relationship between the structure and properties of feather keratin is discussed. The 1-(3-dimethylaminopropyl) -3-ethylcarbondiimide hydrochloride and N-hydroxysuccinimide were used as activation system and cross-linkage. The gallic acid was used as modification reagent and was bonded to feather keratin chains; meanwhile, feather keratin chains were cross-linked through covalent bonds obtained the novel adsorbent (named as GA-FK gel). The GA-FK gel was investigated by IR, SEM, TGA, XRD, and BET methods. The results indicated that GA molecules successfully bonded to feather keratin chains and cross-linked between feather keratin chains. The GA-FK gel was found to have a three-dimensional network structure with abundant mesopores. Its pore size range is 1.8~90 nm; average pore size is 19.6 nm. Its specific surface area is 7.17 m2·g−1. In addition, GA-FK gel was applied to remove Fe(III) in water. The maximum adsorption capacity was 319.0 mg·g−1. The adsorption process of GA-FK gel to Fe(III) presents a typical two-stage pattern accompanied with swelling. The adsorption kinetics of GA-FK gel to Fe(III) follows the quasi-second-order model, the adsorption isotherm follows the Freundlich model. Therefore, the adsorption mechanism is non-specific adsorption.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1527
Author(s):  
Danya Carla Maree ◽  
Mike Heydenrych

Biomass fast pyrolysis oil is a potential renewable alternative to fossil fuels, but its viability is constrained by its corrosiveness, low higher heating value and instability, caused by high oxygenate concentrations. A few studies have outlined layered double hydroxides (LDHs) as possible catalysts for the improvement of biomass pyrolysis oil characteristics. In this study, the goal was to reduce the concentration of oxygen-rich compounds in E. grandis fast pyrolysis oils using CaAl- and MgAl- LDHs. The LDHs were supported by mesoporous silica, synthesised at different pHs to obtain different pore sizes (3.3 to 4.8 nm) and surface areas (up to 600 m2/g). The effects of the support pore sizes and use of LDHs were investigated. GC/MS results revealed that MgAl-LDH significantly reduced the concentrations of ketones and oxygenated aromatics in the electrostatic precipitator oils and increased the concentration of aliphatics. CaAl-LDH had the opposite effect. There was little effect on the oxygenate concentrations of the heat exchanger oils, suggesting that there was a greater extent of conversion of the lighter oil compounds. Bomb calorimetry also showed a marked increase in higher heating values (16.2 to 22.5 MJ/kg) in the electrostatic precipitator oils when using MgAl-LDH. It was also found that the mesoporous silica support synthesised at a pH of 7 was the most effective, likely due to the intermediate average pore width (4 nm).


Sign in / Sign up

Export Citation Format

Share Document