Cytochemical Localization of Guanylate Cyclase in Cardiac Muscle

1982 ◽  
pp. 299-304 ◽  
Author(s):  
W. Schulze ◽  
E.-G. Krause
1980 ◽  
Vol 28 (12) ◽  
pp. 1286-1294 ◽  
Author(s):  
N N Malouf ◽  
G Meissner

Enzymatic properties of a canine cardiac muscle microsomal fraction were determined to localize in situ a "basic," divalent cation dependent adenosine triphosphatase (ATPase) by ultrastructural cytochemistry. The microsomal fraction had a buoyant density of 1.08--1.13 (20--30% [w/w] sucrose) and hydrolyzed adenosine triphosphate in the presence of Mg2+, Ca2+, Mn2+, or Co2+, but not in that of Sr2+ or Ni2+, under conditions that inhibited interfering (Na+ + K+)-ATPase and sarcoplasmic reticulum Ca2+-ATPase activities. "Basic" ATPase was localized in paraformaldehyde-fixed tissue in a medium containing Mg2+ or a high Ca2+ concentration (4 mM). A free Pb2+ concentration of less than 1 microM was used to capture enzymatically released phosphate anions. Electron-dense lead precipitates were present at the plasmalemma, T-system, and intercalated disc membranes with the exception of the nexus. These studies suggest that "basic" ATPase activity is associated with surface membrane structures of canine cardiac muscle.


1997 ◽  
Vol 235 (3) ◽  
pp. 176-179 ◽  
Author(s):  
Ulrich Schraermeyer ◽  
Peter Esser ◽  
Salvatore Grisanti ◽  
Michael Rack ◽  
Klaus Heimann

1982 ◽  
Vol 30 (4) ◽  
pp. 331-342 ◽  
Author(s):  
Y H Kang ◽  
A Sahai ◽  
W E Criss ◽  
W L West

Estrogens are known to increase cyclic guanosine monophosphate (cGMP) levels in the uterus of rats by enhancing guanylate cyclase (GC) activity. In the present study, the cytochemical localization of GC activity was studied in the uteri of immature and ovariectomized rats after treatment with diethylstilbestrol (DES), progesterone, estrogen antagonist (CI628), and a combination of DES and CI628. Twenty-four hours after the first dose of DES, moderate to strong guanylate cyclase activity was indicated by lead phosphate precipitate on the luminal microvillar and basolateral surfaces of epithelial cells, whereas strong activity was found on the plasma membranes of fibroblasts, endothelial cells, and myometrial cells. The enzyme activity in the epithelial cells declined slightly 24 hr after the second daily dose of DES. Uterine tissues from DES-treated rats that were preheated at 60 degrees C for 30 min or preincubated with a GC inhibitor showed no reaction product. Guanylate cyclase activity was not observed cytochemically in the uterine tissues of the vehicle control (immature or ovariectomized) or progesterone-and CI628-treated animals. Weak guanylate cyclase activity was observed on the plasma membranes of epithelial cells and endothelial cells after doses of DES and CI628 were given simultaneously. The biochemical assays of the total homogenate in vitro indicated that uterine GC showed about a twofold increase after one dose of DES and a 1.3-fold increase following two doses (one dose per day) of DES when compared with their respective nontreated controls, or with progesterone-treated uteri. GC was found in particulate (09%) and cytosol (10%) fractions. These data demonstrated that DES stimulated uterine guanylate cyclase activity, while progesterone and CI628 were ineffective at the doses used. Estrogen antagonist CI628 doses not completely suppress the effect of DES.


1995 ◽  
Vol 50 (9-10) ◽  
pp. 695-698 ◽  
Author(s):  
Ulrich Schraermeyer ◽  
Hennig Stieve ◽  
Michael Rack

Abstract In photoreceptor cells of invertebrates light triggers an enzyme cascade in which the phos-phoinositide pathway is crucially involved. Likewise, there is growing evidence of an impor­ tant role of cyclic nucleotides, too. To localize these enzymes able to catalyze the formation of cGM P and cAMP, the spatial distribution of guanylate cyclase (EC 4.6.1.2) and adenylate cyclase (EC 4.6.1.1) was determined in photoreceptor cells of the fly. In photoreceptor cells of the blowfly (Calliphora erythrocephala), the electron dense reaction product of guanylate cyclase was found within the phototransducing region, the rhabdomeral microvilli and in the mitochondria. Staining was also observed throughout the cytoplasm of the microvilli. With the same cytochemical method, reaction product for adenylate cyclase was found on the tips of the photosensory membrane, and not in the cytoplasm of the rhabdomeral microvilli. The results presented here further argue for an important role of one or possibly two cyclic nucleotides in the photoreceptor cells, and possibly in the process of phototransduction of in­ vertebrates.


1976 ◽  
Vol 157 (3) ◽  
pp. 705-712 ◽  
Author(s):  
P V Sulakhe ◽  
S J Sulakhe ◽  
N L Leung ◽  
P J St Louis ◽  
R A Hickie

1. Guanylate cyclase of every fraction studied showed an absolute requirement for Mn2+ ions for optimal activity; with Mg2+ or Ca2+ reaction was barely detectable. Triton X-100 stimulated the particulate enzyme much more than the supernatant enzyme and solubilized the particulate-enzyme activity. 2. Substantial amounts of guanylate cyclase were recovered with the washed particulate fractions of cardiac muscle (63-98%), skeletal muscle (77-93%), cerebral cortex (62-88%) and liver (60-75%) of various species. The supernatants of these tissues contained 7-38% of total activities. In frog heart, the bulk of guanylate cyclase was present in the supernatant fluid. 3. Plasma-membrane fractions contained 26, 21, 22 and 40% respectively of the total homogenate guanylate cyclase activities present in skeletal muscle (rabbit), cardiac muscle (guinea pig), liver (rat) and cerebral cortex (rat). In each case, the specific activity of this enzyme in plasma membranes showed a five- to ten-fold enrichment when compared with homogenate specific activity. 4. These results suggest that guanylate cyclase, like adenylate cyclase, and ouabain-sensitive Na+ + K+-dependent ATPase (adenosine triphosphatase), is associated with the surface membranes of cardiac muscle, skeletal muscle, liver and cerebral cortex; however, considerable activities are also present in the supernatant fractions of these tissues which contain very little adenylate cyclase or ouabain-sensitive Na+ + K+-dependent ATPase activities.


Sign in / Sign up

Export Citation Format

Share Document