Hardy Spaces, Besov Spaces, and Triebel–Lizorkin Spaces

Author(s):  
Loukas Grafakos
Keyword(s):  
2008 ◽  
Vol 2008 ◽  
pp. 1-250 ◽  
Author(s):  
Yongsheng Han ◽  
Detlef Müller ◽  
Dachun Yang

We work on RD-spaces𝒳, namely, spaces of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in𝒳. An important example is the Carnot-Carathéodory space with doubling measure. By constructing an approximation of the identity with bounded support of Coifman type, we develop a theory of Besov and Triebel-Lizorkin spaces on the underlying spaces. In particular, this includes a theory of Hardy spacesHp(𝒳)and local Hardy spaceshp(𝒳)on RD-spaces, which appears to be new in this setting. Among other things, we give frame characterization of these function spaces, study interpolation of such spaces by the real method, and determine their dual spaces whenp≥1. The relations among homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces and Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular integral operators, which include non-isotropic smoothing operators of order zero in the sense of Nagel and Stein that appear in estimates for solutions of the Kohn-Laplacian on certain classes of model domains inℂN. Our theory applies in a wide range of settings.


2010 ◽  
Vol 62 (2) ◽  
pp. 439-455
Author(s):  
Marcus Sundhäll ◽  
Edgar Tchoundja

AbstractIn this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have already been studied by Janson and Peetre for one dimension and by Sundh¨all for several dimensions). We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.


2018 ◽  
Vol 9 (3) ◽  
pp. 85-94
Author(s):  
V.I. Vlasov ◽  
◽  
◽  

2021 ◽  
Vol 11 (1) ◽  
pp. 72-95
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

Abstract This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces. More precisely, we establish the boundedness for the variation operators of singular integrals with rough kernels Ω ∈ Lq (S n−1) (q > 1) and their commutators on Morrey spaces as well as the compactness for the above commutators on Lebesgue spaces and Morrey spaces. In addition, we present a criterion on the boundedness and continuity for a class of variation operators of singular integrals and their commutators on Besov spaces. As applications, we obtain the boundedness and continuity for the variation operators of Hilbert transform, Hermit Riesz transform, Riesz transforms and rough singular integrals as well as their commutators on Besov spaces.


2021 ◽  
Vol 16 (1) ◽  
pp. 119-139
Author(s):  
Long Huang ◽  
Der-Chen Chang ◽  
Dachun Yang

Sign in / Sign up

Export Citation Format

Share Document