Immunohistochemical Phenotyping of Mouse Amacrine Cell Subtypes

Author(s):  
Denize Atan
Keyword(s):  
1985 ◽  
Vol 20 (2) ◽  
pp. 286-290 ◽  
Author(s):  
Colin J. Barnstable ◽  
Raphael Hofstein ◽  
Kimio Akagawa

2005 ◽  
Vol 94 (6) ◽  
pp. 4196-4208 ◽  
Author(s):  
Ajithkumar Warrier ◽  
Salvador Borges ◽  
David Dalcino ◽  
Cameron Walters ◽  
Martin Wilson

The Ca2+ that promotes transmitter release is generally thought to enter presynaptic terminals through voltage-gated Ca2+channels. Using electrophysiology and Ca2+ imaging, we show that, in amacrine cell dendrites, at least some of the Ca2+ that triggers transmitter release comes from endoplasmic reticulum Ca2+ stores. We show that both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are present in these dendrites and both participate in the elevation of cytoplasmic [Ca2+] during the brief depolarization of a dendrite. Only the Ca2+ released through IP3Rs, however, seems to promote the release of transmitter. Antagonists for the IP3R reduced transmitter release, whereas RyR blockers had no effect. Application of an agonist for metabotropic glutamate receptor, known to liberate Ca2+ from internal stores, enhanced both spontaneous and evoked transmitter release.


2020 ◽  
Author(s):  
William N Grimes ◽  
Didem Göz Aytürk ◽  
Mrinalini Hoon ◽  
Takeshi Yoshimatsu ◽  
Clare Gamlin ◽  
...  

AbstractAmacrine cells are interneurons comprising the most diverse cell type in the mammalian retina. They help encode visual features such as edges or directed motion by mediating excitatory and inhibitory interactions between input (i.e. bipolar) and output (i.e. ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, neurovascular control and metabolic regulation. Here, we report that a previously poorly characterized, but relatively abundant, inhibitory amacrine cell type in the mouse retina is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed extensive associations with Müller glia, whose processes often completely ensheathe the neurites of this amacrine cell type. Microinjections of small tracer molecules into the somas of these amacrine cells led to selective labelling of nearby Müller glia, leading us to suggest the name “Müller glia-coupled amacrine cell” or MAC. Our electrophysiological data also indicate that MACs release glycine at conventional chemical synapses with amacrine, bipolar and retinal ganglion cells (RGCs), and viral transsynaptic tracing showed connections to several known RGC types. Visually-evoked responses revealed a strong preference for light increments; these “ON” responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling to other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.Significance StatementGap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system, and play a myriad of roles including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells are rare and poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia.


2020 ◽  
Author(s):  
Patrick C. Kerstein ◽  
Joseph Leffler ◽  
Ben Sivyer ◽  
W. Rowland Taylor ◽  
Kevin Wright

Sign in / Sign up

Export Citation Format

Share Document