Real-Time Observation of G-Quadruplex Dynamics Using Single-Molecule FRET Microscopy

Author(s):  
Burak Okumus ◽  
Taekjip Ha
2015 ◽  
Vol 108 (2) ◽  
pp. 26a
Author(s):  
Digvijay Singh ◽  
Samuel H. Sternberg ◽  
Jingyi Fei ◽  
Jennifer A. Doudna ◽  
Taekjip Ha

2013 ◽  
Vol 135 (28) ◽  
pp. 10254-10257 ◽  
Author(s):  
Woori Bae ◽  
Mal-Gi Choi ◽  
Changbong Hyeon ◽  
Yeon-Kyun Shin ◽  
Tae-Young Yoon

Science ◽  
2018 ◽  
Vol 360 (6388) ◽  
pp. 521-526 ◽  
Author(s):  
Emiko Kazuma ◽  
Jaehoon Jung ◽  
Hiromu Ueba ◽  
Michael Trenary ◽  
Yousoo Kim

2017 ◽  
Author(s):  
Saki Osuka ◽  
Kazushi Isomura ◽  
Shohei Kajimoto ◽  
Tomotaka Komori ◽  
Hiroshi Nishimasu ◽  
...  

ABSTRACTThe CRISPR-associated protein Cas9 is a widely used genome editing tool that recognizes and cleaves target DNA through the assistance of a single-guide RNA (sgRNA). Structural studies have demonstrated the multi-domain architecture of Cas9 and sequential domain movements upon binding to the sgRNA and the target DNA. These studies also hinted at the flexibility between domains, but whether these flexible movements occur in solution is unclear. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single-molecule FRET. The flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal structures. Importantly, the HNH nuclease domain in Cas9 only accessed the DNA cleavage position during such flexible movements, suggesting the importance of this flexibility in the DNA cleavage process. Our FRET data also revealed the conformational flexibility of apo-Cas9, which may play a role in the assembly with the sgRNA. Collectively, our results highlight the potential role of domain fluctuations in driving Cas9-catalyzed DNA cleavage.


2016 ◽  
Author(s):  
Digvijay Singh ◽  
Samuel H. Sternberg ◽  
Jingyi Fei ◽  
Jennifer A. Doudna ◽  
Taekjip Ha

Binding specificity of Cas9-guide RNA complexes to DNA is important for genome engineering applications, but how mismatches influence target recognition and rejection kinetics is not well understood. We used single-molecule FRET to probe real-time interactions between Cas9-RNA and DNA targets. The bimolecular association rate is only weakly dependent on sequence, but the dissociation rate greatly increases from < 0.006 s-1 to > 2 s-1 upon introduction of mismatches proximal to the protospacer adjacent motif (PAM), demonstrating that mismatches encountered early during heteroduplex formation induce rapid rejection of off-target DNA. In contrast, PAM-distal mismatches up to 12 base pairs in length, which prevent DNA cleavage, still allow the formation of a stable complex (off-rate < 0.006 s-1), suggesting that extremely slow rejection could sequester Cas9-RNA, increasing the Cas9 expression level necessary for genome editing thereby aggravating off-target effects. We also observed at least two different bound FRET states that may represent distinct steps in target search and proofreading.


1997 ◽  
Vol 22 (16) ◽  
pp. 1265 ◽  
Author(s):  
M. D. Barnes ◽  
N. Lermer ◽  
C.-Y. Kung ◽  
W. B. Whitten ◽  
J. M. Ramsey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document