Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction

Chem ◽  
2021 ◽  
Author(s):  
Sujun Chen ◽  
Dingkai Su ◽  
Chuancheng Jia ◽  
Yanwei Li ◽  
Xingxing Li ◽  
...  
Science ◽  
2018 ◽  
Vol 360 (6388) ◽  
pp. 521-526 ◽  
Author(s):  
Emiko Kazuma ◽  
Jaehoon Jung ◽  
Hiromu Ueba ◽  
Michael Trenary ◽  
Yousoo Kim

2015 ◽  
Vol 108 (2) ◽  
pp. 26a
Author(s):  
Digvijay Singh ◽  
Samuel H. Sternberg ◽  
Jingyi Fei ◽  
Jennifer A. Doudna ◽  
Taekjip Ha

1997 ◽  
Vol 22 (16) ◽  
pp. 1265 ◽  
Author(s):  
M. D. Barnes ◽  
N. Lermer ◽  
C.-Y. Kung ◽  
W. B. Whitten ◽  
J. M. Ramsey ◽  
...  

2013 ◽  
Vol 135 (28) ◽  
pp. 10254-10257 ◽  
Author(s):  
Woori Bae ◽  
Mal-Gi Choi ◽  
Changbong Hyeon ◽  
Yeon-Kyun Shin ◽  
Tae-Young Yoon

2021 ◽  
Author(s):  
Anastasiia Nemashkalo ◽  
Mary Elizabeth Phipps ◽  
Scott Patrick Hennelly ◽  
Peter Marvin Goodwin

Abstract Living cells rely on numerous protein-protein, RNA-protein and DNA-protein interactions for processes such as gene expression, biomolecular assembly, protein and RNA degradation. Single-molecule microscopy and spectroscopy are ideal tools for real-time observation and quantification of nucleic acids-protein and protein-protein interactions. One of the major drawbacks of conventional single-molecule imaging methods is low throughput. Methods such as sequencing by synthesis utilizing nanofabrication and single-molecule spectroscopy have brought high throughput into the realm of single-molecule biology. The Pacific Biosceinces RS2 sequencer utilizes sequencing by synthesis within nanophotonic zero mode waveguides. A number of years ago this instrument was unlocked by Pacific Biosciences for custom use by researchers allowing them to monitor biological interactions at the single-molecule level with high throughput. In this capability letter we demonstrate the use of the RS2 sequencer for real time observation of DNA-to-RNA transcription and RNA-protein interactions. We use a relatively complex model – transcription of structured ribosomal RNA from E. coli and interactions of ribosomal RNA with ribosomal proteins. We also show evidence of observation of transcriptional pausing without the application of an external force (as is required for single-molecule pausing studies using optical traps). Overall, in the unlocked, custom mode, the RS2 sequencer can be used to address a wide variety of biological assembly and interaction questions at the single-molecule level with high throughput. This instrument is available for use at the Center for Integrated Nanotechnologies Gateway located at Los Alamos National Laboratory.


Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.


Sign in / Sign up

Export Citation Format

Share Document