guide rna
Recently Published Documents


TOTAL DOCUMENTS

925
(FIVE YEARS 558)

H-INDEX

64
(FIVE YEARS 17)

2022 ◽  
Vol 5 (4) ◽  
pp. e202101078
Author(s):  
Tunahan Ergünay ◽  
Özgecan Ayhan ◽  
Arda B Celen ◽  
Panagiota Georgiadou ◽  
Emre Pekbilir ◽  
...  

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Long T. Nguyen ◽  
Santosh R. Rananaware ◽  
Brianna L. M. Pizzano ◽  
Brandon T. Stone ◽  
Piyush K. Jain

Abstract Background The coronavirus disease (COVID-19) caused by SARS-CoV-2 has swept through the globe at an unprecedented rate. CRISPR-based detection technologies have emerged as a rapid and affordable platform that can shape the future of diagnostics. Methods We developed ENHANCEv2 that is composed of a chimeric guide RNA, a modified LbCas12a enzyme, and a dual reporter construct to improve the previously reported ENHANCE system. We validated both ENHANCE and ENHANCEv2 using 62 nasopharyngeal swabs and compared the results to RT-qPCR. We created a lyophilized version of ENHANCEv2 and characterized its detection capability and stability. Results Here we demonstrate that when coupled with an RT-LAMP step, ENHANCE detects COVID-19 samples down to a few copies with 95% accuracy while maintaining a high specificity towards various isolates of SARS-CoV-2 against 31 highly similar and common respiratory pathogens. ENHANCE works robustly in a wide range of magnesium concentrations (3 mM-13 mM), allowing for further assay optimization. Our clinical validation results for both ENHANCE and ENHANCEv2 show 60/62 (96.7%) sample agreement with RT-qPCR results while only using 5 µL of sample and 20 minutes of CRISPR reaction. We show that the lateral flow assay using paper-based strips displays 100% agreement with the fluorescence-based reporter assay during clinical validation. Finally, we demonstrate that a lyophilized version of ENHANCEv2 shows high sensitivity and specificity for SARS-CoV-2 detection while reducing the CRISPR reaction time to as low as 3 minutes while maintaining its detection capability for several weeks upon storage at room temperature. Conclusions CRISPR-based diagnostic platforms offer many advantages as compared to conventional qPCR-based detection methods. Our work here provides clinical validation of ENHANCE and its improved form ENHANCEv2 for the detection of COVID-19.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
De-Li Shi

Maternal gene products accumulated during oogenesis are essential for supporting early developmental processes in both invertebrates and vertebrates. Therefore, understanding their regulatory functions should provide insights into the maternal control of embryogenesis. The CRISPR/Cas9 genome editing technology has provided a powerful tool for creating genetic mutations to study gene functions and developing disease models to identify new therapeutics. However, many maternal genes are also essential after zygotic genome activation; as a result, loss of their zygotic functions often leads to lethality or sterility, thus preventing the generation of maternal mutants by classical crossing between zygotic homozygous mutant adult animals. Although several approaches, such as the rescue of mutant phenotypes through an injection of the wild-type mRNA, germ-line replacement, and the generation of genetically mosaic females, have been developed to overcome this difficulty, they are often technically challenging and time-consuming or inappropriate for many genes that are essential for late developmental events or for germ-line formation. Recently, a method based on the oocyte transgenic expression of CRISPR/Cas9 and guide RNAs has been designed to eliminate maternal gene products in zebrafish. This approach introduces several tandem guide RNA expression cassettes and a GFP reporter into transgenic embryos expressing Cas9 to create biallelic mutations and inactivate genes of interest specifically in the developing oocytes. It is particularly accessible and allows for the elimination of maternal gene products in one fish generation. By further improving its efficiency, this method can be used for the systematic characterization of maternal-effect genes.


Author(s):  
Shalu Kumari Pathak ◽  
Arvind Sonwane ◽  
Subodh Kumar

Background: Programmable nucleases are very promising tools of genome editing (GE), but they suffer from limitations including potential risk of genotoxicity which led to the exploration of safer approach of GE based on RNA-guided recombinase (RGR) platform. RNA-guided recombinase (RGR) platform operates on a typical recognition or target site comprised of the minimal pseudo-core recombinase site, a 5 to 6-base pair spacer flanking it and whole this central region is flanked by two guide RNA-specified DNA sequences or Cas9 binding sites followed by protospacer adjacent motifs (PAMs). Methods: The current study focuses on analysis of entire cattle genome to prepare a detailed map of target sites for RNA-guided hyperactivated recombinase Gin with spacer length six. For this, chromosome wise whole genomic sequence data was retrieved from Ensembl. After that search pattern for recombinase Gin with spacer length six was designed. By using this search pattern, RGR target sites were located by using dreg program of Emboss package. Result: Total number of RGR target sites identified in bovine genome for recombinase Gin was 677 with spacer length six. It was also investigated that whether these RGR target sites are present with in any gene or not and it was found that RGR target sites lies in both genic and intergenic region. Besides this, description of genes in context with these target sites was identified.


2022 ◽  
Vol 36 (1-2) ◽  
pp. 1-3
Author(s):  
U. Thomas Meier

RNA modifications are crucial for the proper function of the RNAs. The sites of pseudouridines are often specified by dual hairpin guide RNAs, with one or both hairpins identifying a target uridine. In this issue of Genes & Development, Jády and colleagues (pp. 70–83) identify a novel mechanism by which a single guide RNA hairpin can specify two uridines adjacent to each other or separated by 1 nt; i.e., one for two or guide RNA acrobatics.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 59
Author(s):  
Yujia Liu ◽  
Dongbin Chen ◽  
Xiaoqian Zhang ◽  
Shuqing Chen ◽  
Dehong Yang ◽  
...  

The silkworm Bombyx mori is an economically important insect. The sericulture industry is seriously affected by pathogen infections. Of these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) causes approximately 80% of the total economic losses due to pathogen infections. We previously constructed a BmNPV-specific CRISPR/Cas9 silkworm line with significantly enhanced resistance to BmNPV. In order to optimize the resistance properties and minimize its impact on economic traits, we constructed an inducible CRISPR/Cas9 system for use in transgenic silkworms. We used the 39k promoter, which is induced by viral infection, to express Cas9 and the U6 promoter to express four small guide RNA targeting the genes encoding BmNPV late expression factors 1 and 3 (lef-1 and lef-3, respectively), which are essential for viral DNA replication. The system was rapidly activated when the silkworm was infected and showed considerably higher resistance to BmNPV infection than the wild-type silkworm. The inducible system significantly reduced the development effects due to the constitutive expression of Cas9. No obvious differences in developmental processes or economically important characteristics were observed between the resulting transgenic silkworms and wild-type silkworms. Adoption of this accurate and highly efficient inducible CRISPR/Cas9 system targeting BmNPV DNA replication will result in enhanced antivirus measures during sericulture, and our work also provides insights into the broader application of the CRISPR/Cas9 system in the control of infectious diseases and insect pests.


2021 ◽  
Author(s):  
Manuel Albanese ◽  
Adrian Ruhle ◽  
Jennifer Mittermaier ◽  
Ernesto Mejías-Pérez ◽  
Madeleine Gapp ◽  
...  

AbstractCD4+ T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4+ T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4+ T cells using optimized cell cultivation and nucleofection conditions of Cas9–guide RNA ribonucleoprotein complexes. Up to six genes, including HIV dependency and restriction factors, were knocked out individually or simultaneously and functionally characterized. Moreover, we demonstrate the knock in of double-stranded DNA donor templates into different endogenous loci, enabling the study of the physiological interplay of cellular and viral components at single-cell resolution. Together, this technique allows improved molecular and functional characterizations of HIV biology and general immune functions in resting CD4+ T cells.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Isabel C. Lewis ◽  
Yao Yan ◽  
Gregory C. Finnigan

The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible practice. The identification and introduction of new engineered variants and orthologues of Cas9 as well as alternative CRISPR systems such as the type V group have provided additional molecular options for editing. These include distinct PAM requirements, staggered DNA double-strand break formation, and the ability to multiplex guide RNAs from a single expression construct. Use of CRISPR/Cas has allowed for the construction and testing of a powerful genetic architecture known as a gene drive within eukaryotic model systems. Our previous work developed a drive within budding yeast using Streptococcus pyogenes Cas9. Here, we installed the type V Francisella novicida Cas12a (Cpf1) nuclease gene and its corresponding guide RNA to power a highly efficient artificial gene drive in diploid yeast. We examined the consequence of altering guide length or introduction of individual mutational substitutions to the crRNA sequence. Cas12a-dependent gene-drive function required a guide RNA of at least 18 bp and could not tolerate most changes within the 5′ end of the crRNA.


2021 ◽  
Author(s):  
Bjorn DM Bean ◽  
Malcolm Whiteway ◽  
Vincent JJ Martin

The genetic tractability of the yeast Saccharomyces cerevisiae has made it a key model organism for basic research and a target for metabolic engineering. To streamline the introduction of tagged genes and compartmental markers with powerful CRISPR-Cas9-based genome editing tools we constructed a Markerless Yeast Localization and Overexpression (MyLO) CRISPR-Cas9 Toolkit with three components: (i) a set of optimized S. pyogenes Cas9-guide RNA (gRNA) expression vectors with five selectable markers and the option to either pre-clone or co-transform the gRNAs; (ii) vectors for the one-step construction of integration cassettes expressing an untagged or GFP/RFP/HA-tagged gene of interest at one of three levels, supporting localization and overexpression studies; and (iii) integration cassettes containing moderately expressed GFP- or RFP-tagged compartmental markers for colocalization experiments. These components allow rapid, high efficiency genomic integrations and modifications with only transient selection for the Cas9 vector, resulting in markerless transformations. Thus, the MyLO toolkit packages CRISPR-Cas9 technology into a flexible, optimized bundle to simplify yeast research


2021 ◽  
Author(s):  
Beáta E. Jády ◽  
Amandine Ketele ◽  
Dylan Moulis ◽  
Tamás Kiss

Site-specific pseudouridylation of human ribosomal and spliceosomal RNAs is directed by H/ACA guide RNAs composed of two hairpins carrying internal pseudouridylation guide loops. The distal “antisense” sequences of the pseudouridylation loop base-pair with the target RNA to position two unpaired target nucleotides 5′-UN-3′, including the 5′ substrate U, under the base of the distal stem topping the guide loop. Therefore, each pseudouridylation loop is expected to direct synthesis of a single pseudouridine (Ψ) in the target sequence. However, in this study, genetic depletion and restoration and RNA mutational analyses demonstrate that at least four human H/ACA RNAs (SNORA53, SNORA57, SCARNA8, and SCARNA1) carry pseudouridylation loops supporting efficient and specific synthesis of two consecutive pseudouridines (ΨΨ or ΨNΨ) in the 28S (Ψ3747/Ψ3749), 18S (Ψ1045/Ψ1046), and U2 (Ψ43/Ψ44 and Ψ89/Ψ91) RNAs, respectively. In order to position two substrate Us for pseudouridylation, the dual guide loops form alternative base-pairing interactions with their target RNAs. This remarkable structural flexibility of dual pseudouridylation loops provides an unexpected versatility for RNA-directed pseudouridylation without compromising its efficiency and accuracy. Besides supporting synthesis of at least 6% of human ribosomal and spliceosomal Ψs, evidence indicates that dual pseudouridylation loops also participate in pseudouridylation of yeast and archaeal rRNAs.


Sign in / Sign up

Export Citation Format

Share Document