time observation
Recently Published Documents


TOTAL DOCUMENTS

1066
(FIVE YEARS 231)

H-INDEX

61
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Anastasiia Nemashkalo ◽  
Mary Elizabeth Phipps ◽  
Scott Patrick Hennelly ◽  
Peter Marvin Goodwin

Abstract Living cells rely on numerous protein-protein, RNA-protein and DNA-protein interactions for processes such as gene expression, biomolecular assembly, protein and RNA degradation. Single-molecule microscopy and spectroscopy are ideal tools for real-time observation and quantification of nucleic acids-protein and protein-protein interactions. One of the major drawbacks of conventional single-molecule imaging methods is low throughput. Methods such as sequencing by synthesis utilizing nanofabrication and single-molecule spectroscopy have brought high throughput into the realm of single-molecule biology. The Pacific Biosceinces RS2 sequencer utilizes sequencing by synthesis within nanophotonic zero mode waveguides. A number of years ago this instrument was unlocked by Pacific Biosciences for custom use by researchers allowing them to monitor biological interactions at the single-molecule level with high throughput. In this capability letter we demonstrate the use of the RS2 sequencer for real time observation of DNA-to-RNA transcription and RNA-protein interactions. We use a relatively complex model – transcription of structured ribosomal RNA from E. coli and interactions of ribosomal RNA with ribosomal proteins. We also show evidence of observation of transcriptional pausing without the application of an external force (as is required for single-molecule pausing studies using optical traps). Overall, in the unlocked, custom mode, the RS2 sequencer can be used to address a wide variety of biological assembly and interaction questions at the single-molecule level with high throughput. This instrument is available for use at the Center for Integrated Nanotechnologies Gateway located at Los Alamos National Laboratory.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sha An ◽  
Tong Peng ◽  
Shaohui Yan ◽  
Baoli Yao ◽  
Peng Zhang

Optical manipulation of micro-particles with nondiffracting and self-accelerating beams has been successfully applied in many research fields such as chemicophysics, material sciences and biomedicine. Such operation mainly focuses on the particle transport and control in the beam propagation direction. However, the conventional optical microscopy is specifically designed for obtaining the sample information located in the lateral plane, which is perpendicular to the optical axis of the detecting objective lens, making the real-time observation of particle dynamics in axial plane a challenge. In this work, we propose and demonstrate a technique which integrates a special beam optical tweezer with a direct axial plane imaging system. Here, particles are transported in aqueous solution along a parabolic trajectory by a designed nonparaxial Weber self-accelerating beam, and the particle motion dynamics both in lateral and axial plane are monitored in real-time by the axial plane imaging technique.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Devendra Pal ◽  
Yevgen Nazarenko ◽  
Thomas C. Preston ◽  
Parisa A. Ariya

AbstractIn situ and real-time characterization of aerosols is vital to several fundamental and applied research domains including atmospheric chemistry, air quality monitoring, or climate change studies. To date, digital holographic microscopy is commonly used to characterize dynamic nanosized particles, but optical traps are required. In this study, a novel integrated digital in-line holographic microscope coupled with a flow tube (Nano-DIHM) is demonstrated to characterize particle phase, shape, morphology, 4D dynamic trajectories, and 3D dimensions of airborne particles ranging from the nanoscale to the microscale. We demonstrate the application of Nano-DIHM for nanosized particles (≤200 nm) in dynamic systems without optical traps. The Nano-DIHM allows observation of moving particles in 3D space and simultaneous measurement of each particle’s three dimensions. As a proof of concept, we report the real-time observation of 100 nm and 200 nm particles, i.e. polystyrene latex spheres and the mixture of metal oxide nanoparticles, in air and aqueous/solid/heterogeneous phases in stationary and dynamic modes. Our observations are validated by high-resolution scanning/transmission electron microscopy and aerosol sizers. The complete automation of software (Octopus/Stingray) with Nano-DIHM permits the reconstruction of thousands of holograms within an hour with 62.5 millisecond time resolution for each hologram, allowing to explore the complex physical and chemical processes of aerosols.


2021 ◽  
Vol 22 (23) ◽  
pp. 12762
Author(s):  
Marta Szczęch ◽  
Alicja Hinz ◽  
Natalia Łopuszyńska ◽  
Monika Bzowska ◽  
Władysław P. Węglarz ◽  
...  

Cancer is one of the most important health problems of our population, and one of the common anticancer treatments is chemotherapy. The disadvantages of chemotherapy are related to the drug’s toxic effects, which act on cancer cells and the healthy part of the body. The solution of the problem is drug encapsulation and drug targeting. The present study aimed to develop a novel method of preparing multifunctional 5-Fluorouracil (5-FU) nanocarriers and their in vitro characterization. 5-FU polyaminoacid-based core@shell nanocarriers were formed by encapsulation drug-loaded nanocores with polyaminoacids multilayer shell via layer-by-layer method. The size of prepared nanocarriers ranged between 80–200 nm. Biocompatibility of our nanocarriers as well as activity of the encapsulated drug were confirmed by MTT tests. Moreover, the ability to the real-time observation of developed nanocarriers and drug accumulation inside the target was confirmed by fluorine magnetic resonance imaging (19F-MRI).


Author(s):  
А. Yu. Uvarov ◽  
V. V. Vikhrev ◽  
G. М. Vodopian ◽  
I. V. Dvoretskaya ◽  
E. Coceac ◽  
...  

Evolving digital technologies are infiltrating schools wave after wave. The changes taking place are viewed as the schools’ digital renewal process (SDRP). The SDRP is complex (multidimensional). It includes changes in the educational environment (physical and virtual), the educational process, and the way the school operates. The SDRP goes uneven, with individual schools at different stages. One-time observation of the SDRP allows you to fix its current state (statics). The longitudinal observations allows you to see changes in the schools’ digital renewal (kinematics). The connection of the observed changes with the impact on the general education system makes it possible to discuss the development of digital renewal under the influence of individual control actions (dynamics). The stages of penetration of digital technologies into the work of the school: computerization, early and mature informatization, digital transformation (transition to the “Smart School”) can be considered as the stages of maturity of the SDRP. The article discusses a framework for describing the processes of digital renewal of schools in an evolving digital environment and an assessment of the SDRP’s maturity.


Sign in / Sign up

Export Citation Format

Share Document