Safranine as a Fluorescent Probe for the Evaluation of Mitochondrial Membrane Potential in Isolated Organelles and Permeabilized Cells

Author(s):  
Tiago R. Figueira ◽  
Daniela R. Melo ◽  
Aníbal E. Vercesi ◽  
Roger F. Castilho
1996 ◽  
Vol 44 (12) ◽  
pp. 1363-1372 ◽  
Author(s):  
M Poot ◽  
Y Z Zhang ◽  
J A Krämer ◽  
K S Wells ◽  
L J Jones ◽  
...  

Investigation of mitochondrial morphology and function has been hampered because photostable, mitochondrion-specific stains that are retained in fixed, permeabilized cells have not been available. We found that in live cell preparations, the CMXRos and H2-CMXRos dyes were more photostable than rhodamine 123. In addition, fluorescence and morphology of mitochondria stained with the CMXRos and CMXRos-H2 dyes were preserved even after formaldehyde fixation and acetone permeabilization. Using epifluorescence microscopy, we showed that CMXRos and H2-CMXRos dye fluorescence fully co-localized with antibodies to subunit I of cytochrome c oxidase, indicating that the dyes specifically stain mitochondria. Confocal microscopy of these mitochondria yielded colored banding patterns, suggesting that these dyes and the mitochondrial enzyme localize to different suborganellar regions. Therefore, these stains provide powerful tools for detailed analysis of mitochondrial fine structure. We also used poisons that decrease mitochondrial membrane potential and an inhibitor of respiration complex II to show by flow cytometry that the fluorescence intensity of CMXRos and H2-CMXRos dye staining responds to changes in mitochondrial membrane potential and function. Hence, CMXRos has the potential to monitor changes in mitochondrial function. In addition, CMXRos staining was used in conjunction with spectrally distinct fluorescent probes for the cell nucleus and the microtubule network to concomitantly evaluate multiple features of cell morphology.


The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3679-3685 ◽  
Author(s):  
Wei Ren ◽  
Ao Ji ◽  
Omran Karmach ◽  
David G. Carter ◽  
Manuela M. Martins-Green ◽  
...  

Dark for light: A fluorescence quencher was turned into a near-infrared probe for mitochondrial membrane potential in living cells and mice.


1992 ◽  
Vol 284 (2) ◽  
pp. 463-467 ◽  
Author(s):  
A E Vercesi ◽  
R Docampo

The use of low concentrations of digitonin allowed the quantitative determination of the mitochondrial membrane potential of Leishmania donovani promastigotes in situ using safranine O. L. donovani mitochondria were able to build up and retain a membrane potential of a value comparable with that of mammalian mitochondria. The response of promastigotes mitochondrial membrane potential to phosphate, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), valinomycin and Ca2+ indicates that these mitochondria behave similarly to vertebrate mitochondria with regard to the properties of their electrochemical proton gradient. When L. donovani promastigotes were permeabilized with digitonin in a reaction medium containing MgATP, succinate and 3.5 microM free Ca2+, they lowered the medium Ca2+ concentration to the submicromolar level (0.05-0.1 microM). The presence of 1 microM-FCCP decreased by about 75% the initial rate of Ca2+ sequestration by these permeabilized cells. This FCCP-insensitive Ca2+ uptake, probably by the endoplasmic reticulum, was completely inhibited by 500 microM-vanadate. On the other hand, when vanadate instead of FCCP was present, the initial rate of Ca2+ accumulation was decreased by about 25% and the Ca2+ set point was increased to 0.7 microM. The succinate-dependence and FCCP-and Ruthenium Red-sensitivity of the Ca2+ uptake detected in the presence of vanadate indicate that this uptake is probably by the mitochondria. This interpretation was further supported by the Ruthenium Red-sensitive decrease in the mitochondrial membrane potential caused by Ca2+ addition. The anti-leishmanial cationic drugs pentamidine and WR-6026 also induced a rapid collapse of the mitochondrial inner membrane potential of L. donovani promastigotes.


Sign in / Sign up

Export Citation Format

Share Document