mitochondrial morphology
Recently Published Documents


TOTAL DOCUMENTS

1156
(FIVE YEARS 516)

H-INDEX

89
(FIVE YEARS 12)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaofei Shang ◽  
Xinghui Yuan ◽  
Lixia Dai ◽  
Yang Liu ◽  
Jian He ◽  
...  

Ruangan granules (RGGs) have been used to treat liver fibrosis with good clinical efficacy for many years. However, the potential mechanism of action of RGGs against liver fibrosis is still unclear. In this study, we evaluated the quality and safety of this preparation and aimed to explore the anti-liver fibrosis activity and potential mode of action of RGGs using network pharmacology and metabolomics. The results showed that RGGs contained abundant ferulic acid, salvianolic acid B and paeoniflorin, and at the given contents and doses, RGGs were safe and presented anti-liver fibrosis activity. They presented anti-liver fibrosis activity by improving liver function (ALT and AST, p < 0.01) and pathology and decreasing fibrosis markers in the serum of rats caused by CCl4, including HA, LN, PC III, HYP, CoII-V, and α-SMA, and the oxidant stress and inflammatory response were also alleviated in a dose-dependent manner, especially for high-dose RGGs (p < 0.01). Further studies showed that RGGs inhibited the activation of the PI3K-Akt signaling pathway in rats induced by CCl4, regulated pyrimidine metabolism, improved oxidative stress and the inflammatory response by regulating mitochondrial morphology, and alleviated liver fibrosis. Luteolin, quercetin, morin and kaempferol were active compounds and presented the cytotoxicity toward to LX-02 cells. This study provides an overall view of the mechanism underlying the action of RGGs protecting against liver fibrosis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Christina Votsi ◽  
Antonis Ververis ◽  
Paschalis Nicolaou ◽  
Yiolanda-Panayiota Christou ◽  
Kyproula Christodoulou ◽  
...  

The SPG7 gene encodes the paraplegin protein, an inner mitochondrial membrane—localized protease. It was initially linked to pure and complicated hereditary spastic paraplegia with cerebellar atrophy, and now represents a frequent cause of undiagnosed cerebellar ataxia and spastic ataxia. We hereby report the molecular characterization and the clinical features of a large Cypriot family with five affected individuals presenting with spastic ataxia in an autosomal recessive transmission mode, due to a novel SPG7 homozygous missense variant. Detailed clinical histories of the patients were obtained, followed by neurological and neurophysiological examinations. Whole exome sequencing (WES) of the proband, in silico gene panel analysis, variant filtering and family segregation analysis of the candidate variants with Sanger sequencing were performed. RNA and protein expression as well as in vitro protein localization studies and mitochondria morphology evaluation were carried out towards functional characterization of the identified variant. The patients presented with typical spastic ataxia features while some intrafamilial phenotypic variation was noted. WES analysis revealed a novel homozygous missense variant in the SPG7 gene (c.1763C > T, p. Thr588Met), characterized as pathogenic by more than 20 in silico prediction tools. Functional studies showed that the variant does not affect neither the RNA or protein expression, nor the protein localization. However, aberrant mitochondrial morphology has been observed thus indicating mitochondrial dysfunction and further demonstrating the pathogenicity of the identified variant. Our study is the first report of an SPG7 pathogenic variant in the Cypriot population and broadens the spectrum of SPG7 pathogenic variants.


BMC Nutrition ◽  
2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Samantha Hughes ◽  
Nikki Kolsters ◽  
David van de Klashorst ◽  
Emanuel Kreuter ◽  
Karin Berger Büter

Abstract Background Members of the Rosaceae, Solanaceae and Zingiberaceae families which include fruits such as cherries, tomatoes and ginger are known to have health promoting effects. There is growing interest in consuming these “functional foods” as a means to increase health and healthy ageing. However, many studies explore the effect of these foods in isolation, not as a blend of multiple functional foods. Methods In this study, an extract containing the dried berries, fruits, and roots of members of these families was prepared, which we called Bioact®180. The nematode Caenorhabditis elegans was used to evaluate the effects of Bioact®180 on lifespan and health endpoints, including muscle and mitochondria structure and locomotion. Results Exposure to the 1000 µg/mL of Bioact®180 extract, containing 4% total phenols, were healthier, as observed by an increase in mean lifespan with and small but significant increase in maximal lifespan. Nematodes exposed to Bioact®180 displayed better mobility in mid-life stages as well as enhanced mitochondrial morphology, which was more comparable to younger animals, suggesting that these worms are protected to some degree from sarcopenia. Conclusions Together, our findings reveal that Bioact®180, a blend of fruits and roots from Rosaceae, Solanaceae and Zingiberaceae family members has anti-aging effects. Bioact®180 promotes health and lifespan extension in C. elegans, corresponding to functional improvements in mobility.


2022 ◽  
Author(s):  
Ning Liu ◽  
Zong Miao ◽  
Wei Tian ◽  
Zhongyuan Bao ◽  
Guangchi Sun ◽  
...  

Abstract Background: Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by the iron-dependent lipid reactive oxygen species (ROS) accumulation, but its exact mechanism in gliomas remains elusive. Acyl–coenzyme A (CoA) synthetase long-chain family member 4 (Acsl4), a pivotal enzyme in the regulation of lipid biosynthesis, has been found to benefit the initiation of ferroptosis, but its role in gliomas likewise needs clarification. Erastin, widely investigated as an inducer of ferroptosis, was recently found to regulate lipid peroxidation by regulating Acsl4 other than glutathione peroxidase 4 (GPX4) in ferroptosis. Methods: Relationship between Hsp90, Drp1 and Acsl4 was determined by Co-immunoprecipitation/ Mass spectrometry and western blot assay. The impact of Hsp90 and Drp1 on Acsl4-dependent ferroptosis was examined by lipid peroxidation indicators in patient-derived PL1 and PG7 cells. The morphological changes of mitochondria are observed by confocal-fluorescence microscopy and transmission electron microscope. Therapeutic efficacy of Erastin-induced ferroptosis in vivo was examined in xenograft mouse models.Results: In this study, we demonstrated that heat shock protein 90 (Hsp90) and dynamin-related protein 1 (Drp1) actively regulated Acsl4 expression in erastin-induced ferroptosis in gliomas. Hsp90 overexpression and calcineurin (CN)–mediated Drp1 dephosphorylation at serine 637 (Ser637) promoted ferroptosis by altering mitochondrial morphology and increasing Acsl4-mediated lipid peroxidation. Importantly, the Hsp90–Acsl4 pathway mediated Acsl4-dependent ferroptosis, amplifying the anticancer activity of erastin in vitro and in vivo. Conclusions: Our study not only uncovered an important role of Hsp90–Drp1–Acsl4 pathway in erastin-induced ferroptosis but also reveals an efficient mechanism of Acsl4 as a potential therapeutic target to ferroptosis-mediated glioma therapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xiaoyi Wei ◽  
Yalin Zheng ◽  
Yanke Ai ◽  
Buman Li

Objective. This study aimed to observe the regulatory effects of astragaloside IV (AS-IV) on hyperglycemia-induced mitochondrial damage and mitophagy in Schwann cells and to provide references for clinical trials on AS-IV in the treatment of diabetic peripheral neuropathy. Methods. Schwann cells were grown in a high-glucose medium to construct an autophagy model; the cells were then treated with AS-IV and N-acetylcysteine (control) to observe the regulatory effects of AS-IV on oxidative stress and mitophagy. Results. AS-IV exhibited antioxidant activity and inhibited the overactivation of autophagy in Schwann cells, significantly reducing the level of reactive oxygen species and downregulating the expression of autophagy-related proteins (LC3, PINK, and Parkin) under hyperglycemic conditions, thereby exerting a protective effect on mitochondrial morphology and membrane potential. Conclusion. AS-IV can maintain the mitochondrial function of Schwann cells under hyperglycemic conditions by effectively alleviating oxidative stress and overactivation of mitophagy. The evidence from this study supports an AS-IV-based therapeutic strategy against diabetic peripheral neuropathy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Miao Tian ◽  
Qing Li ◽  
Yang Liu ◽  
Peng Zheng ◽  
Danyu Li ◽  
...  

AbstractDelayed luminescence (DL) is gradually used in various detection of biological systems as a rapid detection technique, however, its biological mechanism was still not clear. In this study, a new model of DL detection system for liquid biological samples is established to investigate the DL emission of Saccharomyces cerevisiae cells cultured in different glucose concentrations. We analyzed the relationship between the DL emission and cell growth, cell vitality, mitochondrial morphology, mitochondrial DNA (mtDNA) copy number, adenosine triphosphate (ATP), oxygen consumption rate (OCR), as well as mitochondria membrane potential (MMP) in S. cerevisiae cells cultured with 0.01, 0.05, 0.15, 3, 10 and 20 g/L glucose respectively. It was found that the DL emission had strong correlation with mitochondrial morphology, OCR, and MMP. The results suggested that DL is an indicator of mitochondria status under different glucose supply conditions, and may be an effective method to detect mitochondrial metabolism related disorders.


2022 ◽  
Author(s):  
Amandine Guerin ◽  
Claire Angebault ◽  
Sandrina Kinet ◽  
Chantal Cazevieille ◽  
Manuel Rojo ◽  
...  

Limb Expression 1 (LIX1) is a master regulator of digestive mesenchymal progenitor and GastroIntestinal Stromal Tumor (GIST) cell proliferation by controlling the expression of the Hippo effectors YAP1/TAZ and KIT. However, the underlying mechanisms of these LIX1- mediated regulations and tumor promotion remain to be elucidated. Here, we report that LIX1 is S-palmitoylated on cysteine 84 and localized in mitochondria. LIX1 knock-down affects the mitochondrial ultrastructure, resulting in decreased respiration and mitochondrial reactive oxygen species production. This is sufficient to downregulate YAP1/TAZ and reprogram KIT- positive GIST cells towards the smooth muscle cell lineage with reduced proliferative and invasive capacities. Mechanistically, LIX1 knock-down impairs the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial- specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracts the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure, restores YAP1/TAZ signaling, and consequently KIT levels. Altogether, our findings demonstrate that LIX1 contributes to GIST aggressive potential by modulating YAP1/TAZ and KIT levels, a process that depends on mitochondrial remodeling. Our work brings new insights into the mechanisms that could be targeted in tumors in which YAP1 and TAZ are implicated.


2022 ◽  
Author(s):  
Gabriella L. Robertson ◽  
Stellan Riffle ◽  
Mira Patel ◽  
Andrea Marshall ◽  
Heather Beasley ◽  
...  

Mitochondria and peroxisomes are both dynamic signaling organelles that constantly undergo fission. While mitochondrial fission is known to coordinate cellular metabolism, proliferation, and apoptosis, the physiological relevance of peroxisome dynamics and the implications for cell fate are not fully understood. DRP1 (dynamin-related protein 1) is an essential GTPase that executes both mitochondrial and peroxisomal fission. Patients with de novo heterozygous missense mutations in the gene that encodes DRP1, DNM1L, present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1). EMPF1 is a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we utilized human-derived fibroblasts from patients with mutations in DRP1 who present with EMPF1. As expected, patient cells display elongated mitochondrial morphology and lack of fission. Patient cells display a lower coupling efficiency of the electron transport chain, increased proton leak, and upregulation of glycolysis. In addition to these metabolic abnormalities, mitochondrial hyperfusion results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential, both of which are tightly linked to the changes in metabolism. Peroxisome structure is also severely elongated in patient cells and results in a potential functional compensation of fatty acid oxidation. Understanding the mechanism by which DRP1 mutations cause these metabolic changes will give insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hao He ◽  
Changxiang Li ◽  
Xiangyu Lu ◽  
Yanqin Li ◽  
Xuan Li ◽  
...  

Background. Qishen granules (QSG) are a frequently prescribed formula with cardioprotective properties prescribed to HF for many years. RNA-seq profiling revealed that regulation on cardiac mitochondrial energy metabolism is the main therapeutic effect. However, the underlying mechanism is still unknown. In this study, we explored the effects of QSG on regulating mitochondrial energy metabolism and oxidative stress through the PGC-1α/NRF1/TFAM signaling pathway. RNA-seq technology revealed that QSG significantly changed the differential gene expression of mitochondrial dysfunction in myocardial ischemic tissue. The mechanism was verified through the left anterior descending artery- (LAD-) induced HF rat model and oxygen glucose deprivation/recovery- (OGD/R-) established H9C2 induction model both in vivo and in vitro. Echocardiography and HE staining showed that QSG could effectively improve the cardiac function of rats with myocardial infarction in functionality and structure. Furthermore, transcriptomics revealed QSG could significantly regulate mitochondrial dysfunction-related proteins at the transcriptome level. The results of electron microscopy and immunofluorescence proved that the mitochondrial morphology, mitochondrial membrane structural integrity, and myocardial oxidative stress damage can be effectively improved after QSG treatment. Mechanism studies showed that QSG increased the expression level of mitochondrial biogenesis factor PGC-1α/NRF1/TFAM protein and regulated the balance of mitochondrial fusion/fission protein expression. QSG could regulate mitochondrial dysfunction in ischemia heart tissue to protect cardiac function and structure in HF rats. The likely mechanism is the adjustment of PGC-1α/NRF1/TFAM pathway to alleviate oxidative stress in myocardial cells. Therefore, PGC-1α may be a potential therapeutic target for improving mitochondrial dysfunction in HF.


Sign in / Sign up

Export Citation Format

Share Document