Importance of Vision in Human-Robot Communication Understanding Speech Using Robot Vision and Demonstrating Proper Actions to Human Vision

2008 ◽  
pp. 183-202
2009 ◽  
Vol 21 (6) ◽  
pp. 671-671
Author(s):  
Masanori Idesawa ◽  
◽  
Yasushi Mae ◽  
Junji Oaki ◽  
◽  
...  

Robot vision is a key technology in robotics and mechatronics for realizing intelligent robot systems that work in the real world. The fact that robot vision algorithms required much time and effort to apply in real-world applications has delayed their dissemination until new forms made possible by recent rapid improvements in computer speed. Now the day is coming when robot vision may surpass human vision in many applications. This special issue presents 13 papers on the latest robot vision achievements and their applications. The first two propose ways of measuring and modeling 3D objects in everyday environments. Four more detail object detection and tracking, including visual servoing. Three propose advances in hand feature extraction and pose calculation, and one treats video coding for visual sensor networks. Two papers discuss robot vision applications based on human visual physiology, and the last clarifies an application in optical force sensors. We thank the authors for their invaluable contributions to this issue and the reviewers for their generous time and effort. Last, we thank the Editorial Board of JRM for making this issue possible.


1987 ◽  
Vol 31 (11) ◽  
pp. 1281-1285
Author(s):  
John G. Kreifeldt ◽  
Ming C. Chuang

A description of a novel and very speculative approach to new research directions for human vision with application to robotic vision is described. The goal of the approach is to propose a plausible, implementable, spatial perception model for human vision and apply this model to a stereo robot vision system. The model is based on computer algorithms variously called “Multidimensional Scaling”, well known in psychology and sociology but relatively unknown in engineering. These algorithms can reconstruct a spatially accurate model to a high level of metric precision of a “configuration of points” from low quality, error prone non-metric data about the configuration. ALSCAL – a general purpose computer package adaptable for this purpose is being presently evaluated. This is a departure from typical engineering approaches which are directed toward gathering a low volume of highly precise referenced data about the positions of selected points in the visual scene and substitutes instead an approach of gathering a high volume of very low precision relative data about the interpoint spacings. It would seem that the latter approach is the one actually used by the human vision system. The results are highly encouraging in that the agreement between test configurations of two and three dimensional configurations of points are very faithfully reconstructed from as low as 10 points in a configuration using only rank ordered (i.e. nonmetric) information about interpoint spacings. The reconstructions are remarkably robust even under human-like “fuzzy” imprecision in visual measurements.


1976 ◽  
Vol 31 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Lorrin A. Riggs
Keyword(s):  

1985 ◽  
Vol 30 (1) ◽  
pp. 47-47
Author(s):  
Herman Bouma
Keyword(s):  

2003 ◽  
Vol 78 (6) ◽  
pp. 640 ◽  
Author(s):  
Zou Aihua ◽  
Gu Qiang ◽  
Hu Junzhe ◽  
Yuan Chunwei

Author(s):  
Lucas Kato ◽  
Tiago Pinto ◽  
Henrique Simas ◽  
Daniel Martins

Sign in / Sign up

Export Citation Format

Share Document