Human Vision and Computer Vision

1985 ◽  
Vol 30 (1) ◽  
pp. 47-47
Author(s):  
Herman Bouma
Keyword(s):  
Author(s):  
Gilles Simon

It is generally accepted that Jan van Eyck was unaware of perspective. However, an a-contrario analysis of the vanishing points in five of his paintings, realized between 1432 and 1439, unveils a recurring fishbone-like pattern that could only emerge from the use of a polyscopic perspective machine with two degrees of freedom. A 3D reconstruction of Arnolfini Portrait compliant with this pattern suggests that van Eyck's device answered a both aesthetic and scientific questioning on how to represent space as closely as possible to human vision. This discovery makes van Eyck the father of today's immersive and nomadic creative media such as augmented reality and synthetic holography.


Author(s):  
Binbin Zhao ◽  
Shihong Liu

AbstractComputer vision recognition refers to the use of cameras and computers to replace the human eyes with computer vision, such as target recognition, tracking, measurement, and in-depth graphics processing, to process images to make them more suitable for human vision. Aiming at the problem of combining basketball shooting technology with visual recognition motion capture technology, this article mainly introduces the research of basketball shooting technology based on computer vision recognition fusion motion capture technology. This paper proposes that this technology first performs preprocessing operations such as background removal and filtering denoising on the acquired shooting video images to obtain the action characteristics of the characters in the video sequence and then uses the support vector machine (SVM) and the Gaussian mixture model to obtain the characteristics of the objects. Part of the data samples are extracted from the sample set for the learning and training of the model. After the training is completed, the other parts are classified and recognized. The simulation test results of the action database and the real shot video show that the support vector machine (SVM) can more quickly and effectively identify the actions that appear in the shot video, and the average recognition accuracy rate reaches 95.9%, which verifies the application and feasibility of this technology in the recognition of shooting actions is conducive to follow up and improve shooting techniques.


2009 ◽  
Vol 09 (04) ◽  
pp. 495-510 ◽  
Author(s):  
WEIREN SHI ◽  
ZUOJIN LI ◽  
XIN SHI ◽  
ZHI ZHONG

The human vision system is a very sophisticated image processing and objects recognition mechanism. However, it is a challenge to simulate the human or animal vision system to automate visual function in machines, because it is difficult to account for the view-invariant perception of universals such as environmental objects or processes and the explicit perception of featural parts and wholes in visual scenes. In this paper, we first present an introduction to the importance of biologically inspired computer vision and review general and key vision functions from neuroscience perspective. And most significantly, we give an important summarization to and discussion on the specific applications of biologically inspired modeling, including biologically inspired image pre-processing, image perception, and objects recognition. In the end, we give some important and challenging topics of computer vision for future work.


2014 ◽  
Vol 36 (8) ◽  
pp. 1679-1686 ◽  
Author(s):  
Walter J. Scheirer ◽  
Samuel E. Anthony ◽  
Ken Nakayama ◽  
David D. Cox
Keyword(s):  

Perception ◽  
1994 ◽  
Vol 23 (5) ◽  
pp. 563-582 ◽  
Author(s):  
Thierry Van Effelterre

Visual representation of three-dimensional (3-D) objects in our environment is a crucial question, for human as well as for machine vision. Some basics are reviewed of a viewer-centred model of 3-D objects, aspect graphs, which represents a 3-D object by all its topologically stable visible image contours (its aspects) and by the transitions between stable image contours (the visual events). This representation takes only geometrical information about discontinuities in depth and in surface orientation into account, and other clues, such as shadows, markings, texture, etc, are disregarded. Mathematical results give some insight into the relationships between the geometry of a 3-D object and the aspect of its image contours, the techniques used to compute an aspect graph effectively, and the state of the art of this type of model in computer vision. Current research is reviewed on viewer-centred representation in cognitive science that seems to indicate that aspect graphs could also have some relevance for human vision.


2021 ◽  
Vol 12 (2) ◽  
pp. 93-110
Author(s):  
Garv Modwel ◽  
Anu Mehra ◽  
Nitin Rakesh ◽  
K. K. Mishra

The human vision system is mimicked in the format of videos and images in the area of computer vision. As humans can process their memories, likewise video and images can be processed and perceptive with the help of computer vision technology. There is a broad range of fields that have great speculation and concepts building in the area of application of computer vision, which includes automobile, biomedical, space research, etc. The case study in this manuscript enlightens one about the innovation and future scope possibilities that can start a new era in the biomedical image-processing sector. A pre-surgical investigation can be perused with the help of the proposed technology that will enable the doctors to analyses the situations with deeper insight. There are different types of biomedical imaging such as magnetic resonance imaging (MRI), computerized tomographic (CT) scan, x-ray imaging. The focused arena of the proposed research is x-ray imaging in this subset. As it is always error-prone to do an eyeball check for a human when it comes to the detailing. The same applied to doctors. Subsequently, they need different equipment for related technologies. The methodology proposed in this manuscript analyses the details that may be missed by an expert doctor. The input to the algorithm is the image in the format of x-ray imaging; eventually, the output of the process is a label on the corresponding objects in the test image. The tool used in the process also mimics the human brain neuron system. The proposed method uses a convolutional neural network to decide on the labels on the objects for which it interprets the image. After some pre-processing the x-ray images, the neural network receives the input to achieve an efficient performance. The result analysis is done that gives a considerable performance in terms of confusion factor that is represented in terms of percentage. At the end of the narration of the manuscript, future possibilities are being traces out to the limelight to conduct further research.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 637 ◽  
Author(s):  
Nor Aziana Aliteh ◽  
Kaiko Minakata ◽  
Kunihisa Tashiro ◽  
Hiroyuki Wakiwaka ◽  
Kazuki Kobayashi ◽  
...  

Oil palm ripeness’ main evaluation procedure is traditionally accomplished by human vision. However, the dependency on human evaluators to grade the ripeness of oil palm fresh fruit bunches (FFBs) by traditional means could lead to inaccuracy that can cause a reduction in oil palm fruit oil extraction rate (OER). This paper emphasizes the fruit battery method to distinguish oil palm fruit FFB ripeness stages by determining the value of load resistance voltage and its moisture content resolution. In addition, computer vision using a color feature is tested on the same samples to compare the accuracy score using support vector machine (SVM). The accuracy score results of the fruit battery, computer vision, and a combination of both methods’ accuracy scores are evaluated and compared. When the ripe and unripe samples were tested for load resistance voltage ranging from 10 Ω to 10 kΩ, three resistance values were shortlisted and tested for moisture content resolution evaluation. A 1 kΩ load resistance showed the best moisture content resolution, and the results were used for accuracy score evaluation comparison with computer vision. From the results obtained, the accuracy scores for the combination method are the highest, followed by the fruit battery and computer vision methods.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1196
Author(s):  
Long Hoang ◽  
Suk-Hwan Lee ◽  
Oh-Heum Kwon ◽  
Ki-Ryong Kwon

Computer vision recently has many applications such as smart cars, robot navigation, and computer-aided manufacturing. Object classification, in particular 3D classification, is a major part of computer vision. In this paper, we propose a novel method, wave kernel signature (WKS) and a center point (CP) method, which extracts color and distance features from a 3D model to tackle 3D object classification. The motivation of this idea is from the nature of human vision, which we tend to classify an object based on its color and size. Firstly, we find a center point of the mesh to define distance feature. Secondly, we calculate eigenvalues from the 3D mesh, and WKS values, respectively, to capture color feature. These features will be an input of a 2D convolution neural network (CNN) architecture. We use two large-scale 3D model datasets: ModelNet10 and ModelNet40 to evaluate the proposed method. Our experimental results show more accuracy and efficiency than other methods. The proposed method could apply for actual-world problems like autonomous driving and augmented/virtual reality.


Sign in / Sign up

Export Citation Format

Share Document