Towards a New Approach to Vision: Applications to Robots and Humans

1987 ◽  
Vol 31 (11) ◽  
pp. 1281-1285
Author(s):  
John G. Kreifeldt ◽  
Ming C. Chuang

A description of a novel and very speculative approach to new research directions for human vision with application to robotic vision is described. The goal of the approach is to propose a plausible, implementable, spatial perception model for human vision and apply this model to a stereo robot vision system. The model is based on computer algorithms variously called “Multidimensional Scaling”, well known in psychology and sociology but relatively unknown in engineering. These algorithms can reconstruct a spatially accurate model to a high level of metric precision of a “configuration of points” from low quality, error prone non-metric data about the configuration. ALSCAL – a general purpose computer package adaptable for this purpose is being presently evaluated. This is a departure from typical engineering approaches which are directed toward gathering a low volume of highly precise referenced data about the positions of selected points in the visual scene and substitutes instead an approach of gathering a high volume of very low precision relative data about the interpoint spacings. It would seem that the latter approach is the one actually used by the human vision system. The results are highly encouraging in that the agreement between test configurations of two and three dimensional configurations of points are very faithfully reconstructed from as low as 10 points in a configuration using only rank ordered (i.e. nonmetric) information about interpoint spacings. The reconstructions are remarkably robust even under human-like “fuzzy” imprecision in visual measurements.

2018 ◽  
Vol 7 (4.33) ◽  
pp. 487
Author(s):  
Mohamad Haniff Harun ◽  
Mohd Shahrieel Mohd Aras ◽  
Mohd Firdaus Mohd Ab Halim ◽  
Khalil Azha Mohd Annuar ◽  
Arman Hadi Azahar ◽  
...  

This investigation is solely on the adaptation of a vision system algorithm to classify the processes to regulate the decision making related to the tasks and defect’s recognition. These idea stresses on the new method on vision algorithm which is focusing on the shape matching properties to classify defects occur on the product. The problem faced before that the system required to process broad data acquired from the object caused the time and efficiency slightly decrease. The propose defect detection approach combine with Region of Interest, Gaussian smoothing, Correlation and Template Matching are introduced. This application provides high computational savings and results in better recognition rate about 95.14%. The defects occur provides with information of the height which corresponds by the z-coordinate, length which corresponds by the y-coordinate and width which corresponds by the x-coordinate. This data gathered from the proposed system using dual camera for executing the three dimensional transformation.  


2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094237
Author(s):  
Yu He ◽  
Shengyong Chen

The developing time-of-flight (TOF) camera is an attractive device for the robot vision system to capture real-time three-dimensional (3D) images, but the sensor suffers from the limit of low resolution and precision of images. This article proposes an approach to automatic generation of an imaging model in the 3D space for error correction. Through observation data, an initial coarse model of the depth image can be obtained for each TOF camera. Then, its accuracy is improved by an optimization method. Experiments are carried out using three TOF cameras. Results show that the accuracy is dramatically improved by the spatial correction model.


2017 ◽  
Vol 73 (6) ◽  
pp. 478-487 ◽  
Author(s):  
Daniel Castaño-Díez

Dynamois a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance.Dynamois built upon mbtools (middle layer toolbox), a general-purposeMATLABlibrary for object-oriented scientific programming specifically developed to underpinDynamobut usable as an independent tool. Its structure intertwines a flexibleMATLABcodebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without aMATLABlicense. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided forMATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction.Dynamosupports the use of graphical processing units (GPUs), yielding considerable speedup factors both for nativeDynamoprocedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through itsMATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version ofDynamocan be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.


Robotica ◽  
1990 ◽  
Vol 8 (1) ◽  
pp. 47-60 ◽  
Author(s):  
David Vernon

SUMMARYA prototype robot system for automated handling of flexible electrical wires of variable length is described. The handling process involves the selection of a single wire from a tray of many, grasping the wire close to its end with a robot manipulator, and either placing the end in a crimping press or, for tinning applications, dipping the end in a bath of molten solder. This system relies exclusively on the use of vision to identify the position and orientation of the wires prior to their being grasped by the robot end-effector. Two distinct vision algorithms are presented. The first approach utilises binary imaging techniques and involves object segmentation by thresholding followed by thinning and image analysis. An alternative general-purpose approach, based on more robust grey-scale processing techniques, is also described. This approach relies in the analysis of object boundaries generated using a dynamic contour-following algorithm. A simple Robot Control Language (RCL) is described which facilitates robot control in a Cartesian frame of reference and object description using frames (homogeneous transformations). The integration of this language with the robot vision system is detailed, and, in particular, a camera model which compensates for both photometric distortion and manipulator inaccuracies is presented. The system has been implemented using conventional computer architectures; average sensing cycle times of two and six seconds have been achieved for the grey-scale and binary vision algorithms, respectively.


2012 ◽  
Vol 220-223 ◽  
pp. 2188-2191
Author(s):  
Wen Gang Feng ◽  
Xue Chen

In this paper, the problem of scene representation is modeled by simultaneously considering the stimulus-driven and instance-related factors in a probabilistic framework. In this framework, a stimulus-driven component simulates the low-level processes in human vision system using semantic constrain; while a instance-related component simulate the high-level processes to bias the competition of the input features. We interpret the synergetic multi-semantic multi-instance learning on five scene database of LabelMe benchmark, and validate scene classification on the fifteen scene database via the SVM inference with comparison to the state-of-arts methods.


Robotica ◽  
1988 ◽  
Vol 6 (3) ◽  
pp. 243-253 ◽  
Author(s):  
C. Laugier

SUMMARYA high-level robot programming language constitutes a general purpose interface for accessing the basic functional capabilities of a robot. On the other hand, CAD facilities give the possibility of using a subset of these capabilities in an easier fashion. In this paper, we show how a robot programming language and CAD facilities can be combined to obtain a robot programming system satisfying the need for generality, and allowing an easy connection with the basic robot programming functions. Such a connection is based on a “complete” simulator providing facilities for executing robot control programs on a graphic display, for describing manipulation tasks using interactive graphic tools, for simulating the physical world and its perception through sensors, and for displaying three-dimensional scenes as shaded pictures.


Author(s):  
Michelle Carvalho de Sales ◽  
Rafael Maluza Flores ◽  
Julianny da Silva Guimaraes ◽  
Gustavo Vargas da Silva Salomao ◽  
Tamara Kerber Tedesco ◽  
...  

Dental surgeons need in-depth knowledge of the bone tissue status and gingival morphology of atrophic maxillae. The aim of this study is to describe preoperative virtual planning of placement of five implants and to compare the plan with the actual surgical results. Three-dimensional planning of rehabilitation using software programs enables surgical guides to be specially designed for the implant site and manufactured using 3D printing. A patient with five teeth missing was selected for this study. The patient’s maxillary region was scanned with CBCT and a cast model was produced. After virtual planning using ImplantViewer, five implants were placed using a printed surgical guide. Two weeks after the surgical procedure, the patient underwent another CBCT scan of the maxilla. Statistically significant differences were detected between the virtually planned positions and the actual positions of the implants, with a mean deviation of 0.36 mm in the cervical region and 0.7 mm in the apical region. The surgical technique used enables more accurate procedures when compared to the conventional technique. Implants can be better positioned, with a high level of predictability, reducing both operating time and patient discomfort.


2021 ◽  
pp. 0308518X2199781
Author(s):  
Xinyue Luo ◽  
Mingxing Chen

The nodes and links in urban networks are usually presented in a two-dimensional(2D) view. The co-occurrence of nodes and links can also be realized from a three-dimensional(3D) perspective to make the characteristics of urban network more intuitively revealed. Our result shows that the external connections of high-level cities are mainly affected by the level of cities(nodes) and less affected by geographical distance, while medium-level cities are affected by the interaction of the level of cities(nodes) and geographical distance. The external connections of low-level cities are greatly restricted by geographical distance.


2021 ◽  
Vol 11 (2) ◽  
pp. 740
Author(s):  
Krzysztof Zatwarnicki ◽  
Waldemar Pokuta ◽  
Anna Bryniarska ◽  
Anna Zatwarnicka ◽  
Andrzej Metelski ◽  
...  

Artificial intelligence has been developed since the beginning of IT systems. Today there are many AI techniques that are successfully applied. Most of the AI field is, however, concerned with the so-called “narrow AI” demonstrating intelligence only in specialized areas. There is a need to work on general AI solutions that would constitute a framework enabling the integration of already developed narrow solutions and contribute to solving general problems. In this work, we present a new language that potentially can become a base for building intelligent systems of general purpose in the future. This language is called the General Environment Description Language (GEDL). We present the motivation for our research based on the other works in the field. Furthermore, there is an overall description of the idea and basic definitions of elements of the language. We also present an example of the GEDL language usage in the JSON notation. The example shows how to store the knowledge and define the problem to be solved, and the solution to the problem itself. In the end, we present potential fields of application and future work. This article is an introduction to new research in the field of Artificial General Intelligence.


Sign in / Sign up

Export Citation Format

Share Document