optical force
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 126)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 149 ◽  
pp. 107844
Author(s):  
Yanxiang Zhang ◽  
Mingkai Wang ◽  
Zibo Ning ◽  
Ensi Cao ◽  
Xiaofei Liu ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 815
Author(s):  
Genwang Wang ◽  
Ye Ding ◽  
Haotian Long ◽  
Yanchao Guan ◽  
Xiwen Lu ◽  
...  

Nano-manipulation technology, as a kind of “bottom-up” tool, has exhibited an excellent capacity in the field of measurement and fabrication on the nanoscale. Although variety manipulation methods based on probes and microscopes were proposed and widely used due to locating and imaging with high resolution, the development of non-contacted schemes for these methods is still indispensable to operate small objects without damage. However, optical manipulation, especially near-field trapping, is a perfect candidate for establishing brilliant manipulation systems. This paper reports about simulations on the electric and force fields at the tips of metallic probes irradiated by polarized laser outputted coming from a scanning near-field optical microscope probe. Distributions of electric and force field at the tip of a probe have proven that the polarized laser can induce nanoscale evanescent fields with high intensity, which arouse effective force to move nanoparticles. Moreover, schemes with dual probes are also presented and discussed in this paper. Simulation results indicate that different combinations of metallic probes and polarized lasers will provide diverse near-field and corresponding optical force. With the suitable direction of probes and polarization direction, the dual probe exhibits higher trapping force and wider effective wavelength range than a single probe. So, these results give more novel and promising selections for realizing optical manipulation in experiments, so that distinguished multi-functional manipulation systems can be developed.


2022 ◽  
Author(s):  
Ryota Takao ◽  
Kenta Ushiro ◽  
Hazuki Kusano ◽  
Ken-ichi Yuyama ◽  
Tatsuya Shoji ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 251
Author(s):  
Bojian Wei ◽  
Shuhong Gong ◽  
Renxian Li ◽  
Igor V. Minin ◽  
Oleg V. Minin ◽  
...  

In this article, we study the optical force exerted on nanorods. In recent years, the capture of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging subwavelength beam with excellent application prospects. This paper studies the optical force exerted by photonic jets generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs) on nanorods. In the framework of the dipole approximation, the optical force on the nanorods is studied. The electric field of the photonic jet is calculated by the open-source software package DDSCAT developed based on the Discrete Dipole Approximation (DDA). In this paper, the effects of the nanorods’ orientation and dielectric constant on the transverse force Fx and longitudinal force Fy are analyzed. Numerical results show that the maximum value of the positive force and the negative force are equal and appear alternately at the position of the photonic jet. Therefore, to capture anisotropic nanoscale-geometries (nanorods), it is necessary to adjust the position of GLLs continuously. It is worth emphasizing that manipulations with nanorods will make it possible to create new materials at the nanoscale.


Author(s):  
Ryota Takao ◽  
Kenta Ushiro ◽  
Hazuki Kusano ◽  
Ken-ichi Yuyama ◽  
Tatsuya Shoji ◽  
...  

2022 ◽  
Vol 20 (1) ◽  
pp. 013801
Author(s):  
Junji Pu ◽  
Kai Zeng ◽  
Yulie Wu ◽  
Dingbang Xiao

2021 ◽  
Author(s):  
Christina Jayachandran ◽  
Arindam Ghosh ◽  
Meenakshi Prabhune ◽  
Jonathan Bath ◽  
Andrew J. Turberfield ◽  
...  

Mechanical forces are relevant for many biological processes, from wound healing or tumour formation to cell migration and differentiation. Cytoskeletal actin is largely responsible for responding to forces and transmitting them in cells, while also maintaining cell shape and integrity. Here, we describe a novel approach to employ a FRET-based DNA force sensor in vitro and in cellulo for non-invasive optical monitoring of intracellular mechanical forces. We use fluorescence lifetime imaging to determine the FRET efficiency of the sensor, which makes the measurement robust against intensity variations. We demonstrate the applicability of the sensor by monitoring cross-linking activity in in vitro actin networks by bulk rheology and confocal microscopy. We further demonstrate that the sensor readily attaches to stress fibers in living cells which opens up the possibility of live-cell force measurements.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3376
Author(s):  
Miao Peng ◽  
Hui Luo ◽  
Zhaojian Zhang ◽  
Tengfang Kuang ◽  
Dingbo Chen ◽  
...  

Optical pulling forces, which can pull objects in the source direction, have emerged as an intensively explored field in recent years. Conventionally, optical pulling forces exerted on objects can be achieved by tailoring the properties of an electromagnetic field, the surrounding environment, or the particles themselves. Recently, the idea of applying conventional lenses or prisms as photonic probes has been proposed to realize an optical pulling force. However, their sizes are far beyond the scope of optical manipulation. Here, we design a chiral metalens as the photonic probe to generate a robust optical pulling force. The induced pulling force exerted on the metalens, characterized by a broadband spectrum over 0.6 μm (from 1.517 to 2.117 μm) bandwidth, reached a maximum value of −83.76 pN/W. Moreover, under the illumination of incident light with different circular polarization states, the longitudinal optical force acting on the metalens showed a circular dichroism response. This means that the longitudinal optical force can be flexibly tuned from a pulling force to a pushing force by controlling the polarization of the incident light. This work could pave the way for a new advanced optical manipulation technique, with potential applications ranging from contactless wafer-scale fabrication to cell assembly and even course control for spacecraft.


2021 ◽  
Author(s):  
Ali Taghizad Fanid ◽  
Ali Rostami

Abstract Optomechanical wavelength up-conversion based on optical force and core-shell scattering effects are used to control light coupling between two waveguides. This system consists of two parallel optical waveguides with 20 µm lengths suspended on a silica substrate embedded with Ag/Si/SiO2 core-shell nanoparticles. By mid-IR plane wave illumination with different intensities and different wavelengths on nanoparticles, scattering would increase and result in an improvement in attractive gradient optical force exerted on waveguides. Via bending waveguides toward each other, visible light propagating in the first waveguide would couple to another. PDMS as a polymer is used to reduce the required power for bending waveguides. Results reveal that when waveguides’ gap equilibrium is 400 nm and wavelengths of control and probe lights are 4.5 µm and 0.45 µm respectively, about 10.75 mW/µm2 power is needed to bend waveguides for total coupling of light between waveguides. The efficiency of the coupled waveguides system is %43.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 548
Author(s):  
Hanlin Zhang ◽  
Wenqiang Li ◽  
Nan Li ◽  
Huizhu Hu

Geometrical optics approximation is a classic method for calculating the optical trapping force on particles whose sizes are larger than the wavelength of the trapping light. In this study, the effect of the lens misalignment on optical force was analyzed in the geometrical optics regime. We used geometrical optics to analyze the influence of off-axis placement and the tilt of the lens on the trapping position and stiffness in an optical trap. Numerical calculation results showed that lens tilting has a greater impact on the optical trap force than the off-axis misalignments, and both misalignments will couple with each other and cause a shift of the equilibrium point and the asymmetry of the optical trap stiffness in different ways. Our research revealed the asymmetry in optical traps caused by lens misalignment and can provide guidance for optimize lens placement in future experiments.


Sign in / Sign up

Export Citation Format

Share Document