Mean Periodicity on Phase Space and the Heisenberg Group

Author(s):  
Valery V. Volchkov ◽  
Vitaly V. Volchkov
Keyword(s):  
2013 ◽  
Vol 10 (07) ◽  
pp. 1350032 ◽  
Author(s):  
NIKOS KALOGEROPOULOS

We present an embedding of the Tsallis entropy into the three-dimensional Heisenberg group, in order to understand the meaning of generalized independence as encoded in the Tsallis entropy composition property. We infer that the Tsallis entropy composition induces fractal properties on the underlying Euclidean space. Using a theorem of Milnor/Wolf/Tits/Gromov, we justify why the underlying configuration/phase space of systems described by the Tsallis entropy has polynomial growth for both discrete and Riemannian cases. We provide a geometric framework that elucidates Abe's formula for the Tsallis entropy, in terms the Pansu derivative of a map between sub-Riemannian spaces.


Author(s):  
Valery V. Volchkov ◽  
Vitaly V. Volchkov
Keyword(s):  

Author(s):  
MARIUS MĂNTOIU

AbstractA phase-space anisotropic operator in=L2(ℝn) is a self-adjoint operator whose resolvent family belongs to a naturalC*-completion of the space of Hörmander symbols of order zero. Equivalently, each member of the resolvent family is norm-continuous under conjugation with the Schrödinger unitary representation of the Heisenberg group. The essential spectrum of such a phase-space anisotropic operator is the closure of the union of usual spectra of all its “phase-space asymptotic localizations”, obtained as limits over diverging ultrafilters of ℝn×ℝn-translations of the operator. The result extends previous analysis of the purely configurational anisotropic operators, for which only the behavior at infinity in ℝnwas allowed to be non-trivial.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1987 ◽  
Vol 48 (C2) ◽  
pp. C2-233-C2-239
Author(s):  
P. DANIELEWICZ

1991 ◽  
Vol 161 (2) ◽  
pp. 13-75 ◽  
Author(s):  
Lev V. Prokhorov ◽  
Sergei V. Shabanov

Sign in / Sign up

Export Citation Format

Share Document