Real-time Motion Planning of Kinematically Redundant Manipulators Using Recurrent Neural Networks

Author(s):  
Jun Wang ◽  
Xiaolin Hu ◽  
Bo Zhang
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Khawaja Fahad Iqbal ◽  
Akira Kanazawa ◽  
Silvia Romana Ottaviani ◽  
Jun Kinugawa ◽  
Kazuhiro Kosuge

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Dmitry Amelin ◽  
Ivan Potapov ◽  
Josep Cardona Audí ◽  
Andreas Kogut ◽  
Rüdiger Rupp ◽  
...  

AbstractThis paper reports on the evaluation of recurrent and convolutional neural networks as real-time grasp phase classifiers for future control of neuroprostheses for people with high spinal cord injury. A field-programmable gate array has been chosen as an implementation platform due to its form factor and ability to perform parallel computations, which are specific for the selected neural networks. Three different phases of two grasp patterns and the additional open hand pattern were predicted by means of surface Electromyography (EMG) signals (i.e. Seven classes in total). Across seven healthy subjects, CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks) had a mean accuracy of 85.23% with a standard deviation of 4.77% and 112 µs per prediction and 83.30% with a standard deviation of 4.36% and 40 µs per prediction, respectively.


Sign in / Sign up

Export Citation Format

Share Document