obstacle avoidance
Recently Published Documents


TOTAL DOCUMENTS

4282
(FIVE YEARS 1196)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zheng Fang ◽  
Xifeng Liang

Purpose The results of obstacle avoidance path planning for the manipulator using artificial potential field (APF) method contain a large number of path nodes, which reduce the efficiency of manipulators. This paper aims to propose a new intelligent obstacle avoidance path planning method for picking robot to improve the efficiency of manipulators. Design/methodology/approach To improve the efficiency of the robot, this paper proposes a new intelligent obstacle avoidance path planning method for picking robot. In this method, we present a snake-tongue algorithm based on slope-type potential field and combine the snake-tongue algorithm with genetic algorithm (GA) and reinforcement learning (RL) to reduce the path length and the number of path nodes in the path planning results. Findings Simulation experiments were conducted with tomato string picking manipulator. The results showed that the path length is reduced from 4.1 to 2.979 m, the number of nodes is reduced from 31 to 3 and the working time of the robot is reduced from 87.35 to 37.12 s, after APF method combined with GA and RL. Originality/value This paper proposes a new improved method of APF, and combines it with GA and RL. The experimental results show that the new intelligent obstacle avoidance path planning method proposed in this paper is beneficial to improve the efficiency of the robotic arm. Graphical abstract Figure 1 According to principles of bionics, we propose a new path search method, snake-tongue algorithm, based on a slope-type potential field. At the same time, we use genetic algorithm to strengthen the ability of the artificial potential field method for path searching, so that it can complete the path searching in a variety of complex obstacle distribution situations with shorter path searching results. Reinforcement learning is used to reduce the number of path nodes, which is good for improving the efficiency of robot work. The use of genetic algorithm and reinforcement learning lays the foundation for intelligent control.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weiliang Zhu ◽  
Zhaojun Pang ◽  
Jiyue Si ◽  
Zhonghua Du

Purpose This paper aims to study the encounter issues of the Tethered-Space Net Robot System (TSNRS) with non-target objects on orbit during the maneuver, including the collision issues with small space debris and the obstacle avoidance from large obstacles. Design/methodology/approach For the collision of TSNRS with small debris, the available collision model of the tethered net and its limitation is discussed, and the collision detection method is improved. Then the dynamic response of TSNRS is studied and a closed-loop controller is designed. For the obstacle avoidance, the variable enveloping circle of the TSNRS has coupled with the artificial potential field (APF) method. In addition, the APF is improved with a local trajectory correction method to avoid the overbending segment of the trajectory. Findings The collision model coupled with the improved collision detection method solves the detection failure and speeds up calculation efficiency by 12 times. Collisions of TSNRS with small debris make the local thread stretch and deforms finally making the net a mess. The boundary of the disturbance is obtained by a series of collision tests, and the designed controller not only achieved the tracking control of the TSNRS but also suppressed the disturbance of the net. Practical implications This paper fills the gap in the research on the collision of the tethered net with small debris and makes the collision model more general and efficient by improving the collision detection method. And the coupled obstacle avoidance method makes the process of obstacle avoidance safer and smoother. Originality/value The work in this paper provides a reference for the on-orbit application of TSNRS in the active space debris removal mission.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Enrique Aldao ◽  
Luis M. González-deSantos ◽  
Humberto Michinel ◽  
Higinio González-Jorge

In this work, a real-time collision avoidance algorithm was presented for autonomous navigation in the presence of fixed and moving obstacles in building environments. The current implementation is designed for autonomous navigation between waypoints of a predefined flight trajectory that would be performed by an UAV during tasks such as inspections or construction progress monitoring. It uses a simplified geometry generated from a point cloud of the scenario. In addition, it also employs information from 3D sensors to detect and position obstacles such as people or other UAVs, which are not registered in the original cloud. If an obstacle is detected, the algorithm estimates its motion and computes an evasion path considering the geometry of the environment. The method has been successfully tested in different scenarios, offering robust results in all avoidance maneuvers. Execution times were measured, demonstrating that the algorithm is computationally feasible to be implemented onboard an UAV.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Liwei Yang ◽  
Lixia Fu ◽  
Ping Li ◽  
Jianlin Mao ◽  
Ning Guo

To further improve the path planning of the mobile robot in complex dynamic environments, this paper proposes an enhanced hybrid algorithm by considering the excellent search capability of the ant colony optimization (ACO) for global paths and the advantages of the dynamic window approach (DWA) for local obstacle avoidance. Firstly, we establish a new dynamic environment model based on the motion characteristics of the obstacles. Secondly, we improve the traditional ACO from the pheromone update and heuristic function and then design a strategy to solve the deadlock problem. Considering the actual path requirements of the robot, a new path smoothing method is present. Finally, the robot modeled by DWA obtains navigation information from the global path, and we enhance its trajectory tracking capability and dynamic obstacle avoidance capability by improving the evaluation function. The simulation and experimental results show that our algorithm improves the robot's navigation capability, search capability, and dynamic obstacle avoidance capability in unknown and complex dynamic environments.


2022 ◽  
Vol 12 (2) ◽  
pp. 535
Author(s):  
Wenbo Suo ◽  
Mengyang Wang ◽  
Dong Zhang ◽  
Zhongjun Qu ◽  
Lei Yu

The formation control technology of the unmanned aerial vehicle (UAV) swarm is a current research hotspot, and formation switching and formation obstacle avoidance are vital technologies. Aiming at the problem of formation control of fixed-wing UAVs in distributed ad hoc networks, this paper proposed a route-based formation switching and obstacle avoidance method. First, the consistency theory was used to design the UAV swarm formation control protocol. According to the agreement, the self-organized UAV swarm could obtain the formation waypoint according to the current position information, and then follow the corresponding rules to design the waypoint to fly around and arrive at the formation waypoint at the same time to achieve formation switching. Secondly, the formation of the obstacle avoidance channel was obtained by combining the geometric method and an intelligent path search algorithm. Then, the UAV swarm was divided into multiple smaller formations to achieve the formation obstacle avoidance. Finally, the abnormal conditions during the flight were handled. The simulation results showed that the formation control technology based on distributed ad hoc network was reliable and straightforward, easy to implement, robust in versatility, and helpful to deal with the communication anomalies and flight anomalies with variable topology.


Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 69-79
Author(s):  
Anran Wang ◽  
Li Wang ◽  
Yinuo Zhang ◽  
Baocheng Hua ◽  
Tao Li ◽  
...  

AbstractTianwen-1 (TW-1) is the first Chinese interplanetary mission to have accomplished orbiting, landing, and patrolling in a single exploration of Mars. After safe landing, it is essential to reconstruct the descent trajectory and determine the landing site of the lander. For this purpose, we processed descent images of the TW-1 optical obstacle-avoidance sensor (OOAS) and digital orthophoto map (DOM) of the landing area using our proposed hybrid-matching method, in which the landing process is divided into two parts. In the first, crater matching is used to obtain the geometric transformations between the OOAS images and DOM to calculate the position of the lander. In the second, feature matching is applied to compute the position of the lander. We calculated the landing site of TW-1 to be 109.9259° E, 25.0659° N with a positional accuracy of 1.56 m and reconstructed the landing trajectory with a horizontal root mean squared error of 1.79 m. These results will facilitate the analyses of the obstacle-avoidance system and optimize the control strategy in the follow-up planetary-exploration missions.


2022 ◽  
Author(s):  
Benjamin Alva ◽  
Raghav S. Bhagwat ◽  
Blake Hartwell ◽  
Emma Bernard ◽  
Vinayak Rajesh
Keyword(s):  

2022 ◽  
Author(s):  
Andreas Thoma ◽  
Alex Fisher ◽  
Alessandro Gardi ◽  
Carsten Braun

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Stephanie Kamarry ◽  
Raimundo Carlos S. Freire ◽  
Elyson A. N. Carvalho ◽  
Lucas Molina ◽  
Phillipe Cardoso Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document