Combination Cellular Therapy for Regenerative Medicine: The Stem Cell Niche

Author(s):  
Ian K. McNiece
Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1483
Author(s):  
Margarita Calonge ◽  
Teresa Nieto-Miguel ◽  
Ana de la Mata ◽  
Sara Galindo ◽  
José M. Herreras ◽  
...  

Corneal failure is a highly prevalent cause of blindness. One special cause of corneal failure occurs due to malfunction or destruction of the limbal stem cell niche, upon which the superficial cornea depends for homeostatic maintenance and wound healing. Failure of the limbal niche is referred to as limbal stem cell deficiency. As the corneal epithelial stem cell niche is easily accessible, limbal stem cell-based therapy and regenerative medicine applied to the ocular surface are among the most highly advanced forms of this novel approach to disease therapy. However, the challenges are still great, including the development of cell-based products and understanding how they work in the patient’s eye. Advances are being made at the molecular, cellular, and tissue levels to alter disease processes and to reduce or eliminate blindness. Efforts must be coordinated from the most basic research to the most clinically oriented projects so that cell-based therapies can become an integrated part of the therapeutic armamentarium to fight corneal blindness. We undoubtedly are progressing along the right path because cell-based therapy for eye diseases is one of the most successful examples of global regenerative medicine.


2010 ◽  
Vol 7 (2) ◽  
pp. 248-255 ◽  
Author(s):  
José Becerra ◽  
Leonor Santos-Ruiz ◽  
José A. Andrades ◽  
Manuel Marí-Beffa

2012 ◽  
Vol 92 (2) ◽  
pp. 577-595 ◽  
Author(s):  
Jon M. Oatley ◽  
Ralph L. Brinster

This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.


2012 ◽  
Vol 10 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Amy J. Wagers

2020 ◽  
Vol 71 (2) ◽  
pp. 211-213
Author(s):  
K. Sato ◽  
S. Chitose ◽  
K. Sato ◽  
F. Sato ◽  
T. Kurita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document