scholarly journals Deep Metric Learning with Hierarchical Triplet Loss

Author(s):  
Weifeng Ge ◽  
Weilin Huang ◽  
Dengke Dong ◽  
Matthew R. Scott
2020 ◽  
Vol 10 (2) ◽  
pp. 615 ◽  
Author(s):  
Tomas Iesmantas ◽  
Agne Paulauskaite-Taraseviciene ◽  
Kristina Sutiene

(1) Background: The segmentation of cell nuclei is an essential task in a wide range of biomedical studies and clinical practices. The full automation of this process remains a challenge due to intra- and internuclear variations across a wide range of tissue morphologies, differences in staining protocols and imaging procedures. (2) Methods: A deep learning model with metric embeddings such as contrastive loss and triplet loss with semi-hard negative mining is proposed in order to accurately segment cell nuclei in a diverse set of microscopy images. The effectiveness of the proposed model was tested on a large-scale multi-tissue collection of microscopy image sets. (3) Results: The use of deep metric learning increased the overall segmentation prediction by 3.12% in the average value of Dice similarity coefficients as compared to no metric learning. In particular, the largest gain was observed for segmenting cell nuclei in H&E -stained images when deep learning network and triplet loss with semi-hard negative mining were considered for the task. (4) Conclusion: We conclude that deep metric learning gives an additional boost to the overall learning process and consequently improves the segmentation performance. Notably, the improvement ranges approximately between 0.13% and 22.31% for different types of images in the terms of Dice coefficients when compared to no metric deep learning.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 68089-68095 ◽  
Author(s):  
Min Chen ◽  
Yongxin Ge ◽  
Xin Feng ◽  
Chuanyun Xu ◽  
Dan Yang

Author(s):  
Xiaoyu He ◽  
Yong Wang ◽  
Shuang Zhao ◽  
Chunli Yao

AbstractCurrently, convolutional neural networks (CNNs) have made remarkable achievements in skin lesion classification because of their end-to-end feature representation abilities. However, precise skin lesion classification is still challenging because of the following three issues: (1) insufficient training samples, (2) inter-class similarities and intra-class variations, and (3) lack of the ability to focus on discriminative skin lesion parts. To address these issues, we propose a deep metric attention learning CNN (DeMAL-CNN) for skin lesion classification. In DeMAL-CNN, a triplet-based network (TPN) is first designed based on deep metric learning, which consists of three weight-shared embedding extraction networks. TPN adopts a triplet of samples as input and uses the triplet loss to optimize the embeddings, which can not only increase the number of training samples, but also learn the embeddings robust to inter-class similarities and intra-class variations. In addition, a mixed attention mechanism considering both the spatial-wise and channel-wise attention information is designed and integrated into the construction of each embedding extraction network, which can further strengthen the skin lesion localization ability of DeMAL-CNN. After extracting the embeddings, three weight-shared classification layers are used to generate the final predictions. In the training procedure, we combine the triplet loss with the classification loss as a hybrid loss to train DeMAL-CNN. We compare DeMAL-CNN with the baseline method, attention methods, advanced challenge methods, and state-of-the-art skin lesion classification methods on the ISIC 2016 and ISIC 2017 datasets, and test its generalization ability on the PH2 dataset. The results demonstrate its effectiveness.


2021 ◽  
Author(s):  
Ēvalds Urtāns

This work describes the importance of loss functions and related methods for deep reinforcement learning and deep metric learning. A novel MDQN loss function outperformed DDQN loss function in PLE computer game environments, and a novel Exponential Triplet loss function outperformed the Triplet loss function in the face re-identification task with VGGFace2 dataset reaching 85,7 % accuracy using zero-shot setting. This work also presents a novel UNet-RNN-Skip model to improve the performance of the value function for path planning tasks.


2020 ◽  
Author(s):  
Yuki Takashima ◽  
Ryoichi Takashima ◽  
Tetsuya Takiguchi ◽  
Yasuo Ariki

Sign in / Sign up

Export Citation Format

Share Document