Performances of computer vision tasks have been drastically improved after applying deep learning. Such object recognition, object segmentation, object tracking, and others have been approached to the super-human level. Most of the algorithms were trained by using supervised learning. In general, the performance of computer vision is improved by increasing the size of the data. The collected data was labeled and used as a data set of the YOLO algorithm. In this paper, we propose a data set generation method using Unity which is one of the 3D engines. The proposed method makes it easy to obtain the data necessary for learning. We classify 2D polymorphic objects and test them against various data using a deep learning model. In the classification using CNN and VGG-16, 90% accuracy was achieved. And we used Tiny-YOLO of YOLO algorithm for object recognition and we achieved 78% accuracy. Finally, we compared in terms of virtual and real environments it showed a result of 97 to 99 percent for each accuracy.