Seismic Demands Assessment of Tall Buildings: Theoretical Approach and Applications

Author(s):  
Benazouz Chikh ◽  
Mustapha Remki ◽  
Abdelkader Benyoucef ◽  
Youcef Mehani ◽  
Mohamed Hadid ◽  
...  
2009 ◽  
Vol 31 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Mehdi Poursha ◽  
Faramarz Khoshnoudian ◽  
A.S. Moghadam

Author(s):  
Chiung-Yueh Lin ◽  
Wei-Zhi Chen ◽  
Tysh-Shang Jan

The seismic demands of tall buildings can be evaluated by nonlinear response history analysis with some more representative, site-dependent, earthquakes, or by pushover analysis. However, the process of the evaluation is tedious and time consuming. Therefore, it is desirable to have a simplified process that provides quick and reasonable estimates of seismic demands, especially in the stage of conceptual (preliminary) design. Gupta & Krawinkler (2000) has reached on a process in the estimation of roof and story drift demands for frame structures from the spectral displacement at the first period of the structure, through a series of modification factors, accounting for MDOF effects, inelasticity effects, and P-delta effects. It is found that this process can estimate seismic demands reasonably, provided that no negative post-yield story stiffness exists. Also, the modification factors are uniform or with reasonable dispersion, except for structures dominated by higher mode effects. This study has conducted a similar research by performing simulations on Taiwan code–compliant structures of different heights (2,5,10,20 and 30 stories), located in different seismic zones and subjected to sets of local ground motions. The feature of this study is that the seismic demands are estimated from the SRSS of the elastic, modal roof displacements of the structure, instead of the first mode spectral displacement. The simulation results have shown that the modification factors are more promising — uniform or with more reasonable dispersion — even the structure is dominated by high mode effects. Therefore, it is concluded that the process proposed in this study is a feasible method and the modification factors obtained in this study are useful for local engineer in engineering applications.


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Sign in / Sign up

Export Citation Format

Share Document