chiral structures
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 50)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Audrey R. Sulkanen ◽  
Minyuan Wang ◽  
Logan A. Swartz ◽  
Jaeuk Sung ◽  
Gang Sun ◽  
...  
Keyword(s):  

Author(s):  
Shijie Sun ◽  
Baijin Li ◽  
Boyu Fu ◽  
Zilin Ruan ◽  
Hui Zhang ◽  
...  
Keyword(s):  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranran Zhang ◽  
Qiuling Zhao ◽  
Xia Wang ◽  
Kai Ming Lau ◽  
Tsz Kit Yung ◽  
...  

Abstract Metasurfaces with ultrathin artificial structures have attracted much attention because of their unprecedented capability in light manipulations. The recent development of metasurfaces with controllable responses opens up new opportunities in various applications. Moreover, metasurfaces composed of twisted chiral structures can generate asymmetric responses for opposite incidence, leading to more degrees of freedom in wave detections and controls. However, most past studies had focused on the amplitude responses, not to mention using bi-directional phase responses, in the characterization and light manipulation of chiral metasurfaces. Here, we report a birefringent interference approach to achieve a controllable asymmetric bi-directional transmission phase from planar chiral metasurface by tuning the orientation of the metasurface with respect to the optical axis of an add-on birefringent substrate. To demonstrate our approach, we fabricate planar Au sawtooth nanoarray metasurface and measure the asymmetric transmission phase of the metasurface placed on a birefringent sapphire crystal slab. The Au sawtooth metasurface-sapphire system exhibits large oscillatory behavior for the asymmetric transmission phase with the tuning parameter. We confirm our experimental results by Jones matrix calculations using data obtained from full-wave simulations for the metasurface. Our approach in the characterization and light manipulation of metasurfaces with controllable responses is simple and nondestructive, enabling new functionalities and potential applications in optical communication, imaging, and remote sensing.


2021 ◽  
pp. 429-440
Author(s):  
Yun-Che Wang ◽  
Tsai-Wen Ko ◽  
Kai-Wen Tan

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Evgenii Strugovshchikov ◽  
Aleksandr Pishtshev ◽  
Smagul Karazhanov

Abstract Inorganic systems containing two or more kinds of anions, such as rare-earth metal oxyhydrides, have a number of interesting properties that can be used in the design and development of new functional materials with desired characteristics. Chemical synthesis of these materials can be accomplished by oxidation of metal hydrides. However, the oxidation process of a metal hydride is directly accompanied by the release of hydrogen; both processes are a combination of two sequential reactions. This is usually not favorable for the formation and crystallization of the ternary oxyhydride composition. One possible way to overcome this problem is to introduce an appropriate amount of oxygen atoms into certain interstitial positions adjacent to the metal sites of the hydride lattice. Guided by the ideas of orthogonality, we have proposed a theoretical model capable of providing a thorough understanding of the chemical processes occurring in a multicomponent system at the molecular level. This model opens the way for predicting a wide range of new, stable multi-anion compounds of different compositions. It can also control functionality by adding noncovalent interactions between different kinds of anions, which can lead to the formation of chiral structures or a significant increase in ferro- and piezoelectric properties.


Author(s):  
V. N. Kadantsev

The article discusses the features of the radiation of ultrafast point clusters of charged particles moving uniformly near a gyrotropic medium interface. It is shown that some types of electromagnetic radiation – transient and/or Cherenkov radiation – have the characteristics of superchiral fields. Therefore, they can be effectively used to study chiral structures (for example, to detect circular dichroism, the frequency characteristics of refractive indices), various materials, including biomaterials. Ultrafast (relativistic) particles can serve as a «tool» not only for studying the structure of various materials. They can also be used as «generators» of quasiparticles that determine the «dynamic» properties of the materials under study, as well as the features of their interaction with radiation of various nature and response to external influences. In this paper, some types of circularly polarized EM waves propagating in optically active (magnetoactive, naturally active, gyrotropic, and chiral) media are considered. Using the generalized reciprocity theorem for media characterized by the Hermitian permittivity tensor, we consider the transient and Cherenkov radiation excited by a uniformly moving bunch of charged particles when it crosses (or moves along) the interface of media, one of which is an optically active gyrotropic medium. It is shown that the superchiral electromagnetic fields of the transition and Cherenkov radiation of dipoles can serve as a source of chiral collective excitations in magnetoactive and naturally active media. The investigated mechanisms of interaction of electromagnetic radiation with chiral materials (structures and media) are one of the possible physical approaches to solving the problem of the chiral purity of the biosphere and to elucidate the factor of deracemization of the organic primeval environment. A new hypothesis is presented, suggesting that ultra-high-speed clumps of charged particles of cosmic origin can cause deracemization of the prebiosphere.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
SeongYong Cho ◽  
Misaki Takahashi ◽  
Jun-ichi Fukuda ◽  
Hiroyuki Yoshida ◽  
Masanori Ozaki

AbstractControlling the crystallographic orientation of 3D photonic crystals is important as it determines the behavior of light propagating through the device. Blue phases self-assemble into unique soft 3D photonic crystals with chiral structures for circular-polarization selectivity, but it has remained a challenge to control its 3D orientation. Here, we show that the orientation of blue phases can be precisely controlled to follow a predefined pattern imprinted on a substrate by exploiting field-induced phase transitions. Obtaining the blue phase through the field-induced chiral nematic phase and tetragonal blue phase X results in a highly oriented blue phase I with the crystallographic [001] direction aligned along the surface anchoring. Our approach is applied to fabricating a Bragg-Berry hologram with omnidirectional circular-polarization selectivity, where the hologram is visible only for one circular-polarization under all incident angles. Such devices are difficult to fabricate using conventional optical materials, thereby demonstrating the potential of self-organizing soft matter for photonics.


Sign in / Sign up

Export Citation Format

Share Document