Solving the Traveling Tournament Problem with Predefined Venues by Parallel Constraint Programming

Author(s):  
Ke Liu ◽  
Sven Löffler ◽  
Petra Hofstedt
2010 ◽  
Vol 130 (2) ◽  
pp. 332-342 ◽  
Author(s):  
Shuichiro Sakikawa ◽  
Tatsuhiro Sato ◽  
Toyohisa Morita ◽  
Kenji Ohta

Author(s):  
Yingchun Xia ◽  
Zhiqiang Xie ◽  
Yu Xin ◽  
Xiaowei Zhang

The customized products such as electromechanical prototype products are a type of product with research and trial manufacturing characteristics. The BOM structures and processing parameters of the products vary greatly, making it difficult for a single shop to meet such a wide range of processing parameters. For the dynamic and fuzzy manufacturing characteristics of the products, not only the coordinated transport time of multiple shops but also the fact that the product has a designated output shop should be considered. In order to solve such Multi-shop Integrated Scheduling Problem with Fixed Output Constraint (MISP-FOC), a constraint programming model is developed to minimize the total tardiness, and then a Multi-shop Integrated Scheduling Algorithm (MISA) based on EGA (Enhanced Genetic Algorithm) and B&B (Branch and Bound) is proposed. MISA is a hybrid optimization method and consists of four parts. Firstly, to deal with the dynamic and fuzzy manufacturing characteristics, the dynamic production process is transformed into a series of time-continuous static scheduling problem according to the proposed dynamic rescheduling mechanism. Secondly, the pre-scheduling scheme is generated by the EGA at each event moment. Thirdly, the jobs in the pre-scheduling scheme are divided into three parts, namely, dispatched jobs, jobs to be dispatched, and jobs available for rescheduling, and at last, the B&B method is used to optimize the jobs available for rescheduling by utilizing the period when the dispatched jobs are in execution. Google OR-Tools is used to verify the proposed constraint programming model, and the experiment results show that the proposed algorithm is effective and feasible.


2020 ◽  
pp. 1-16
Author(s):  
Meriem Khelifa ◽  
Dalila Boughaci ◽  
Esma Aïmeur

The Traveling Tournament Problem (TTP) is concerned with finding a double round-robin tournament schedule that minimizes the total distances traveled by the teams. It has attracted significant interest recently since a favorable TTP schedule can result in significant savings for the league. This paper proposes an original evolutionary algorithm for TTP. We first propose a quick and effective constructive algorithm to construct a Double Round Robin Tournament (DRRT) schedule with low travel cost. We then describe an enhanced genetic algorithm with a new crossover operator to improve the travel cost of the generated schedules. A new heuristic for ordering efficiently the scheduled rounds is also proposed. The latter leads to significant enhancement in the quality of the schedules. The overall method is evaluated on publicly available standard benchmarks and compared with other techniques for TTP and UTTP (Unconstrained Traveling Tournament Problem). The computational experiment shows that the proposed approach could build very good solutions comparable to other state-of-the-art approaches or better than the current best solutions on UTTP. Further, our method provides new valuable solutions to some unsolved UTTP instances and outperforms prior methods for all US National League (NL) instances.


Sign in / Sign up

Export Citation Format

Share Document