scholarly journals On the Complexity of Color-Avoiding Site and Bond Percolation

Author(s):  
Roland Molontay ◽  
Kitti Varga
Keyword(s):  
1998 ◽  
Vol 58 (13) ◽  
pp. 8475-8480 ◽  
Author(s):  
E. E Vogel ◽  
S. Contreras ◽  
M. A. Osorio ◽  
J. Cartes ◽  
F. Nieto ◽  
...  
Keyword(s):  

2000 ◽  
Vol 62 (13) ◽  
pp. 8719-8724 ◽  
Author(s):  
H. M. Harreis ◽  
W. Bauer

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
M. I. González-Flores ◽  
A. A. Torres ◽  
W. Lebrecht ◽  
A. J. Ramirez-Pastor

2013 ◽  
Vol 110 (10) ◽  
Author(s):  
Laurent Hébert-Dufresne ◽  
Oscar Patterson-Lomba ◽  
Georg M. Goerg ◽  
Benjamin M. Althouse
Keyword(s):  

2012 ◽  
Vol 21 (1-2) ◽  
pp. 11-22 ◽  
Author(s):  
PAUL BALISTER ◽  
BÉLA BOLLOBÁS

Given a locally finite connected infinite graphG, let the interval [pmin(G),pmax(G)] be the smallest interval such that ifp>pmax(G), then every 1-independent bond percolation model onGwith bond probabilityppercolates, and forp<pmin(G) none does. We determine this interval for trees in terms of the branching number of the tree. We also give some general bounds for other graphsG, in particular for lattices.


1993 ◽  
Vol 193 (3-4) ◽  
pp. 314-331 ◽  
Author(s):  
R. Brower ◽  
P. Tamayo
Keyword(s):  

1984 ◽  
Vol 21 (4) ◽  
pp. 911-914 ◽  
Author(s):  
Kari Kuulasmaa ◽  
Stan Zachary

We show that a lower bound for the probability that a spatial general epidemic never becomes extinct is given by the percolation probability of an associated bond percolation process.


Sign in / Sign up

Export Citation Format

Share Document