scholarly journals Exploring Intelligent Service Migration in Vehicular Networks

Author(s):  
Onyekachukwu A. Ezenwigbo ◽  
Vishnu Vardhan Paranthaman ◽  
Glenford Mapp ◽  
Ramona Trestian
2021 ◽  
Vol 11 (3) ◽  
pp. 944
Author(s):  
Katja Gilly ◽  
Sonja Filiposka ◽  
Salvador Alcaraz

Advanced learning algorithms for autonomous driving require lots of processing and storage power, which puts a strain on vehicles’ computing resources. Using a combination of 5G network connectivity with ultra-high bandwidth and low latency together with extra computing power located at the edge of the network can help extend the capabilities of vehicular networks. However, due to the high mobility, it is essential that the offloaded services are migrated so that they are always in close proximity to the requester. Using proactive migration techniques ensures minimum latency for high service quality. However, predicting the next edge server to migrate comes with an error that can have deteriorating effects on the latency. In this paper, we examine the influence of mobility prediction errors on edge service migration performances in terms of latency penalty using a large-scale urban vehicular simulation. Our results show that the average service delay increases almost linearly with the migration prediction error, with 20% error yielding almost double service latency.


2021 ◽  
Author(s):  
Amine Abouaomar ◽  
Zoubeir Mlika ◽  
Abderrahime Filali ◽  
Soumaya Cherkaoui ◽  
Abdellatif Kobbane

2013 ◽  
Vol 32 (4) ◽  
pp. 900-904 ◽  
Author(s):  
Xiao-yang LIU ◽  
Min-you WU
Keyword(s):  

2021 ◽  
Vol 184 ◽  
pp. 364-371
Author(s):  
Ezgi Tetik Saglam ◽  
Yusuf Yaslan ◽  
Sema F. Oktug
Keyword(s):  

Author(s):  
Mohammad Asif Hossain ◽  
Rafidah Md Noor ◽  
Saaidal Razalli Azzuhri ◽  
Muhammad Reza Z'aba ◽  
Ismail Ahmedy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document