Spectrum sensing challenges & their solutions in cognitive radio based vehicular networks

Author(s):  
Mohammad Asif Hossain ◽  
Rafidah Md Noor ◽  
Saaidal Razalli Azzuhri ◽  
Muhammad Reza Z'aba ◽  
Ismail Ahmedy ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Haroon Rasheed ◽  
Nandana Rajatheva

Recent advancement in vehicular wireless applications is also a major contributing factor in spectrum scarcity. Cognitive radio system is a mechanism which allows unlicensed cognitive users (CUs) to utilize idle unused bands. Fast and reliable detection of primary legacy user is the key component of cognitive radio networks. However, hidden terminal and low SNR problems due to shadow fading put fundamental limit to the sensing performance and practical entailments in design of the cognitive vehicular networks. Extensive modeling is being carried out to specify varying channel characteristics, particularly multipath fading and shadowing. Energy detection-(ED-) based spectrum sensing is a viable choice for many vehicle-to-vehicle (V2V) and vehicle to-road-side infrastructure (V2I) communications. This paper examines the performance of spectrum sensing using ED over Gamma-shadowed Nakagami-m composite fading channel to cater for both small-and-large scale fading. The results highlight the notable impact of shadowing spread and fading severity on detection performance. The relevant simulation results are presented to support our analytical results for average detection probability. Furthermore, these results are investigated and compared to other compound and classical channels.


Author(s):  
Xiaomin Qian ◽  
Li Hao ◽  
Dadong Ni ◽  
Quang Thanh Tran

An explosive growth in vehicular wireless services and applications gives rise to spectrum resource starvation. Cognitive radio has been used to vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicles mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channels condition on spectrum sensing performance under temporally correlated Rayleigh sensing channel. For local and cooperative sensing, we derive some alternative expressions for average probability of miss detection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.


2011 ◽  
Vol 30 (11) ◽  
pp. 2638-2641
Author(s):  
Dong Chen ◽  
Jian-dong Li ◽  
Ji-yong Pang ◽  
Jing Ma

Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


Sign in / Sign up

Export Citation Format

Share Document