Validation of Virtual CMM-Based Method for Uncertainty Estimation of Measurements Performed on Five-Axis Coordinate Measuring Machines

Author(s):  
Adam Gąska ◽  
Wiktor Harmatys ◽  
Piotr Gąska ◽  
Maciej Gruza ◽  
Jerzy Sładek
2019 ◽  
Vol 104 (9-12) ◽  
pp. 4685-4696 ◽  
Author(s):  
Piotr Gąska ◽  
Adam Gąska ◽  
Jerzy Sładek ◽  
Jerzy Jędrzejewski

Author(s):  
Haitao Zhang ◽  
Shugui Liu ◽  
Xinghua Li

REVO five-axis system, designed for the orthogonal coordinate measuring machines, must be reconfigured for the application in the non-orthogonal coordinate measuring machines. First, in this article, error sources of the system and components of measurement data are analyzed; then, scale values of coordinate measuring machine axes, which are essential to derive the coordinates of measured points in non-orthogonal coordinate measuring machine, are separated out. Besides, the mathematical model of REVO is established based on the quasi-rigid body theory, from which the measurement results can be evaluated by data derived instead of that returned by the system. The effectiveness of both separation of scale values and mathematical model of REVO is proved by experiments and practice. The research of this article is of great significance to the application of REVO five-axis system in the non-orthogonal coordinate measuring machine.


Author(s):  
Marc J.C. de Jong ◽  
P. Emile S.J. Asselbergs ◽  
Max T. Otten

A new step forward in Transmission Electron Microscopy has been made with the introduction of the CompuStage on the CM-series TEMs: CM120, CM200, CM200 FEG and CM300. This new goniometer has motorization on five axes (X, Y, Z, α, β), all under full computer control by a dedicated microprocessor that is in communication with the main CM processor. Positions on all five axes are read out directly - not via a system counting motor revolutions - thereby providing a high degree of accuracy. The CompuStage enters the octagonal block around the specimen through a single port, allowing the specimen stage to float freely in the vacuum between the objective-lens pole pieces, thereby improving vibration stability and freeing up one access port. Improvements in the mechanical design ensure higher stability with regard to vibration and drift. During stage movement the holder O-ring no longer slides, providing higher drift stability and positioning accuracy as well as better vacuum.


Sign in / Sign up

Export Citation Format

Share Document