Modulation Recognition Technology of Communication Signals Based on Density Clustering and Sample Reconstruction

Author(s):  
Hui Han ◽  
Xianglong Zhou ◽  
Xiang Chen ◽  
Ruowu Wu ◽  
Yun Lin
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yuxin Huang

Modulation recognition of communication signals plays an important role in both civil and military uses. Neural network-based modulation recognition methods can extract high-level abstract features which can be adopted for classification of modulation types. Compared with traditional recognition methods based on manually defined features, they have the advantage of higher recognition rate. However, in actual modulation recognition scenarios, due to inaccurate estimation of receiving parameters and other reasons, the input signal samples for modulation recognition may have large phase, frequency offsets, and time scale changes. Existing deep learning-based modulation recognition methods have not considered the influences brought by the above issues, thus resulting in a decreased recognition rate. A modulation recognition method based on the spatial transformation network is proposed in this paper. In the proposed network, some prior models for synchronization in communication are introduced, and the priori models are realized through the spatial transformation subnetwork, so as to reduce the influence of phase, frequency offsets, and time scale differences. Experiments on simulated datasets prove that compared with the traditional CNN, ResNet, and the CLDNN, the recognition rate of the proposed method has increased by 8.0%, 5.8%, and 4.6%, respectively, when the signal-to-noise ratio is greater than 0. Moreover, the proposed network is also easier to train. The training time required for convergence has reduced by 4.5% and 80.7% compared to the ResNet and CLDNN, respectively.


Sign in / Sign up

Export Citation Format

Share Document