The Mardešić Factorization Theorem and the Dimension of Metrizable Spaces

2019 ◽  
pp. 139-146
Author(s):  
Michael G. Charalambous
1998 ◽  
Vol 91 (6) ◽  
pp. 3387-3415
Author(s):  
D. N. Georgiou ◽  
S. D. Iliadis
Keyword(s):  

Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


2013 ◽  
Vol 401 (1) ◽  
pp. 289-292 ◽  
Author(s):  
Kohei Nakade ◽  
Tomoyoshi Ohwada ◽  
Kichi-Suke Saito

1971 ◽  
Vol 22 (1) ◽  
pp. 660-663
Author(s):  
Ludvik Janos
Keyword(s):  

2006 ◽  
Vol 05 (02) ◽  
pp. 231-243
Author(s):  
DONGVU TONIEN

Recently, Hoit introduced arithmetic on blocks, which extends the binary string operation by Jacobs and Keane. A string of elements from the Abelian additive group of residues modulo m, (Zm, ⊕), is called an m-block. The set of m-blocks together with Hoit's new product operation form an interesting algebraic structure where associative law and cancellation law hold. A weaker form of unique factorization and criteria for two indecomposable blocks to commute are also proved. In this paper, we extend Hoit's results by replacing the Abelian group (Zm, ⊕) by an arbitrary monoid (A, ◦). The set of strings built up from the alphabet A is denoted by String(A). We extend the operation ◦ on the alphabet set A to the string set String(A). We show that (String(A), ◦) is a monoid if and only if (A, ◦) is a monoid. When (A, ◦) is a group, we prove that stronger versions of a cancellation law and unique factorization hold for (String(A), ◦). A general criterion for two irreducible strings to commute is also presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ze Long Liu ◽  
Bianka Mecaj ◽  
Matthias Neubert ◽  
Xing Wang

Abstract Building on the recent derivation of a bare factorization theorem for the b-quark induced contribution to the h → γγ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where λ = mb/Mh « 1 in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that “endpoint regularization” does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $$ {\alpha \alpha}_s^2{L}^k $$ αα s 2 L k in the three-loop decay amplitude, where $$ L=\ln \left(-{M}_h^2/{m}_b^2\right) $$ L = ln − M h 2 / m b 2 and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $$ \sim {\alpha \alpha}_s^n{L}^{2n+1} $$ ∼ αα s n L 2 n + 1 .


Sign in / Sign up

Export Citation Format

Share Document