On "Essentially Metrizable" Spaces and on Measurable Functions with Values in Such Spaces

1965 ◽  
Vol 119 (3) ◽  
pp. 443
Author(s):  
Elias Zakon
1994 ◽  
Vol 20 (2) ◽  
pp. 407
Author(s):  
Morayne

1998 ◽  
Vol 91 (6) ◽  
pp. 3387-3415
Author(s):  
D. N. Georgiou ◽  
S. D. Iliadis
Keyword(s):  

2021 ◽  
Vol 40 (3) ◽  
pp. 5517-5526
Author(s):  
Ömer Kişi

We investigate the concepts of pointwise and uniform I θ -convergence and type of convergence lying between mentioned convergence methods, that is, equi-ideally lacunary convergence of sequences of fuzzy valued functions and acquire several results. We give the lacunary ideal form of Egorov’s theorem for sequences of fuzzy valued measurable functions defined on a finite measure space ( X , M , μ ) . We also introduce the concept of I θ -convergence in measure for sequences of fuzzy valued functions and proved some significant results.


Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


1997 ◽  
Vol 4 (6) ◽  
pp. 557-566
Author(s):  
B. Půža

Abstract Sufficient conditions of solvability and unique solvability of the boundary value problem u (m)(t) = f(t, u(τ 11(t)), . . . , u(τ 1k (t)), . . . , u (m–1)(τ m1(t)), . . . . . . , u (m–1)(τ mk (t))), u(t) = 0, for t ∉ [a, b], u (i–1)(a) = 0 (i = 1, . . . , m – 1), u (m–1)(b) = 0, are established, where τ ij : [a, b] → R (i = 1, . . . , m; j = 1, . . . , k) are measurable functions and the vector function f : ]a, b[×Rkmn → Rn is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.


1995 ◽  
Vol 117 (2) ◽  
pp. 333-338 ◽  
Author(s):  
Raffaele Chiappinelli

Let ρ,ρ0,ρ1 be positive, measurable functions on ℝN. For 1 ≤ t < ∞, consider the weighted Lebesgue and Sobolev spaces


1971 ◽  
Vol 22 (1) ◽  
pp. 660-663
Author(s):  
Ludvik Janos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document