quark loop
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Vol 258 ◽  
pp. 06005
Author(s):  
Johan Bijnens ◽  
Nils Hermansson-Truedsson ◽  
Antonio Rodríguez-Sánchez

Model-independent short-distance constraints allow for a reduction of theoretical uncertainties associated to the analytic evaluation of Hadronic Light-by-Light contributions to the muon g-2. In this talk we focus on the region where the three loop virtualities are large. Even when the fourth photon leg is soft, we show how a precise Operator Product Expansion can be applied in that region. The leading contribution is found to be given by the quark loop, while the evaluation of both gluonic and power corrections show how the expansion is well behaved at relatively low energies, where significant contributions to the muon g-2 remain. Numerical values for them are also presented.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Di Wang ◽  
Cai-Ping Jia ◽  
Fu-Sheng Yu

Abstract We propose a systematic theoretical framework for the topological amplitudes of the heavy meson decays and their SU(N) decomposition. In the framework, the topologies are expressed in invariant tensors and classified into tree- and penguin-operator-induced diagrams according to which four-quark operators, tree or penguin, being inserted into their effective weak vertexes. The number of possible topologies contributing to one type of decay can be counted by permutations and combinations. The Wigner-Eckhart theorem ensures the topological amplitudes under flavor symmetry are the same for different decay channels. By decomposing the four-quark operators into irreducible representations of SU(N) group, one can get the SU(N) irreducible amplitudes. Taking the D → PP decay (P denoting a pseudoscalar meson) with SU(3)F symmetry as an example, we present our framework in detail. The linear correlation of topologies in the SU(3)F limit is clarified in group theory. It is found there are only nine independent topologies in all tree- and penguin-operator-induced diagrams contributing to the D → PP decays in the Standard Model. If a large quark-loop diagram, named TLP, is assumed, the large ∆ACP and the very different D0→ K+K− and D0→ π+π− branching fractions can be explained with a normal U-spin breaking. Moreover, our framework provides a simple way to analyze the SU(N) breaking effects. The linear SU(3)F breaking and the high order U-spin breaking in charm decays are re-investigated in our framework, which are consistent with literature. Analogous to the degeneracy and splitting of energy levels, we propose the concepts of degeneracy and splitting of topologies to describe the flavor symmetry breaking effects in decay. As applications, we analyze the strange-less D decays in SU(3)F symmetry breaking into Isospin symmetry and the charm-less B decays in SU(4)F symmetry breaking into SU(3)F symmetry.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
G. Colangelo ◽  
F. Hagelstein ◽  
M. Hoferichter ◽  
L. Laub ◽  
P. Stoffer

AbstractWe reassess the impact of short-distance constraints for the longitudinal component of the hadronic light-by-light amplitude on the anomalous magnetic moment of the muon, $$a_\mu =(g-2)_\mu /2$$ a μ = ( g - 2 ) μ / 2 , by comparing different solutions that have recently appeared in the literature. In particular, we analyze the relevance of the exact axial anomaly and its impact on $$a_\mu $$ a μ and conclude that it remains rather limited. We show that all recently proposed solutions agree well within uncertainties on the numerical estimate of the impact of short-distance constraints on $$a_\mu $$ a μ , despite differences in the concrete implementation. We also take into account the recently calculated perturbative corrections to the massless quark loop to update our estimate and outline the path towards future improvements.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Bakul Agarwal ◽  
Stephen P. Jones ◽  
Andreas von Manteuffel

Abstract We calculate the two-loop QCD corrections to gg → ZZ involving a closed top-quark loop. We present a new method to systematically construct linear combinations of Feynman integrals with a convergent parametric representation, where we also allow for irreducible numerators, higher powers of propagators, dimensionally shifted integrals, and subsector integrals. The amplitude is expressed in terms of such finite integrals by employing syzygies derived with linear algebra and finite field techniques. Evaluating the amplitude using numerical integration, we find agreement with previous expansions in asymptotic limits and provide ab initio results also for intermediate partonic energies and non-central scattering at higher energies.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Johan Bijnens ◽  
Nils Hermansson-Truedsson ◽  
Laetitia Laub ◽  
Antonio Rodríguez-Sánchez

Abstract The short-distance behaviour of the hadronic light-by-light (HLbL) contribution to (g − 2)μ has recently been studied by means of an operator product expansion in a background electromagnetic field. The leading term in this expansion has been shown to be given by the massless quark loop, and the non-perturbative corrections are numerically very suppressed. Here, we calculate the perturbative QCD correction to the massless quark loop. The correction is found to be fairly small compared to the quark loop as far as we study energy scales where the perturbative running for the QCD coupling is well-defined, i.e. for scales μ ≳ 1 GeV. This should allow to reduce the large systematic uncertainty associated to high-multiplicity hadronic states.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ze Long Liu ◽  
Bianka Mecaj ◽  
Matthias Neubert ◽  
Xing Wang

Abstract Building on the recent derivation of a bare factorization theorem for the b-quark induced contribution to the h → γγ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where λ = mb/Mh « 1 in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that “endpoint regularization” does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $$ {\alpha \alpha}_s^2{L}^k $$ αα s 2 L k in the three-loop decay amplitude, where $$ L=\ln \left(-{M}_h^2/{m}_b^2\right) $$ L = ln − M h 2 / m b 2 and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $$ \sim {\alpha \alpha}_s^n{L}^{2n+1} $$ ∼ αα s n L 2 n + 1 .


2020 ◽  
Author(s):  
Carlos Quezada Calonge ◽  
Antonio Dobado ◽  
Juan Jose Sanz-Cillero
Keyword(s):  

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 089-103
Author(s):  
José Rubén Morones-Ibarra ◽  
Nallaly Berenice Mata-Carrizal ◽  
Enrique Valbuena-Ordóñez ◽  
Adrián Jacob Garza-Aguirre

AbstractIn this article, we study the two-flavor Nambu and Jona-Lasinio (NJL) phase diagrams on the T–μ plane through three regularization methods. In one of these, we introduce an infrared three-momentum cutoff in addition to the usual ultraviolet regularization to the quark loop integrals and compare the obtained phase diagrams with those obtained from the NJL model with proper time regularization and Pauli–Villars regularization. We have found that the crossover appears as a band with a well-defined width in the T–μ plane. To determine the extension of the crossover zone, we propose a novel criterion, comparing it to another criterion that is commonly reported in the literature; we then obtain the phase diagrams for each criterion. We study the behavior of the phase diagrams under all these schemes, focusing on the influence of the regularization procedure on the crossover zone and the presence or absence of critical end points.


Sign in / Sign up

Export Citation Format

Share Document